【題目】如圖,在平面直角坐標(biāo)系中, AB=AC=10,線段BC軸上,BC=12,點(diǎn)B的坐標(biāo)為(-3,0),線段AB軸于點(diǎn)E,過AADBCD,動點(diǎn)P從原點(diǎn)出發(fā),以每秒3個單位的速度沿軸向右運(yùn)動,設(shè)運(yùn)動的時間為秒.

1)當(dāng)BPE是等腰三角形時,求的值;

2)若點(diǎn)P運(yùn)動的同時,ABCB為位似中心向右放大,且點(diǎn)C向右運(yùn)動的速度為每秒2個單位,ABC放大的同時高AD也隨之放大,當(dāng)以EP為直徑的圓與動線段AD所在直線相切時,求的值和此時點(diǎn)C的坐標(biāo).

【答案】1t=t=1t=;(2)當(dāng)t=1時⊙F與動線段AD所在直線相切,此時C110).

【解析】

1)首先求出直線AB的解析式,進(jìn)而分別利用①當(dāng)BEBP時,②當(dāng)EBEP時,③當(dāng)PBPE時,得出t的值即可;

2)首先得出△PGF∽△POE,再利用在RtEOP中:EP2OP2EO2,進(jìn)而求出t的值以及C點(diǎn)坐標(biāo).

1∵AB=AC,AD⊥BC,

∴BD=CD=6,

∵AB=10∴AD=8,∴A38),

設(shè)直線AB的解析式為:y=kx+b,則,

解得:

直線AB的解析式為:y=x+4,

∴E0,4),

∴BE=5,

當(dāng)△BPE是等腰三角形有三種情況:

當(dāng)BE=BP時,3+3t=5,解得:t=;

當(dāng)EB=EP時,3t=3,解得:t=1;

當(dāng)PB=PE時,

∵PB=PE,AB=AC,∠ABC=∠PBE

∴∠PEB=∠ACB=∠ABC,

∴△PBE∽△ABC,

,

,解得:t=,

綜上:t=t=1t=;

2)由題意得:C9+2t0),

∴BC=12+2t,BD=CD=6+t,OD=3+t,

設(shè)FEP的中點(diǎn),連接OF,作FH⊥AD,FG⊥OP,

∵FG∥EO,

∴△PGF∽△POE,

∴PG=OG=t,FG=EO=2∴Ft,2),

∴FH=GD=ODOG=3+tt=3t

∵⊙F與動線段AD所在直線相切,FH=EP=3t,

Rt△EOP中:EP2=OP2+EO2

∴43t2=3t2+16

解得:t1=1,t2=(舍去),

當(dāng)t=1⊙F與動線段AD所在直線相切,此時C11,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為cm,在AC,BC邊上各取一點(diǎn)E,F,使得AE=CF,連接AF,BE相交于點(diǎn)P.(1)則∠APB=______度;(2)當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動到點(diǎn)C時,則動點(diǎn)P經(jīng)過的路徑長為________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖坐標(biāo)系中,RtBAC的直角頂點(diǎn)Ay軸上,頂點(diǎn)Bx軸上,且OA4OB6,雙曲線y經(jīng)過點(diǎn)和斜邊BC的中點(diǎn)D,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yx2bxc的圖象,其頂點(diǎn)坐標(biāo)為M(1,-4)

(1)求出圖象與x軸的交點(diǎn)AB的坐標(biāo);

(2)在二次函數(shù)的圖象上是否存在點(diǎn)P,使SPABSMAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在ABC中,∠BAC=60°,BC=4,則ABC面積的最大值是

2)已知:ABC,用無刻度的直尺和圓規(guī)求作DBC,使∠BDC+A=180°,且BD=DC.(注:不寫作法,保留作圖痕跡,對圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注,作出一個符合題意的三角形即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線,下列結(jié)論:①;②;③;④;⑤方程有一正一負(fù)兩個實(shí)數(shù)解.其中結(jié)論正確的個數(shù)為(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的直徑的延長線上,點(diǎn)上,且AC=CD∠ACD=120°.

1)求證:的切線;

2)若的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+bk≠0)的圖象與x軸,y軸分別交于A(﹣90)、B0,6),過點(diǎn)C2,0)作直線lBC垂直,點(diǎn)E在直線l位于x軸上方的部分.

1)求一次函數(shù)y=kx+bk≠0)的解析式;

2)求直線l的解析式;

查看答案和解析>>

同步練習(xí)冊答案