(2013•武侯區(qū)一模)如圖,反比例函數(shù)y=
k
x
的圖象經(jīng)過點(diǎn)A(a,b)且|a+2
3
|+(b-2
3
2=0,直線y=2x-2與x軸交于點(diǎn)B,與y軸交于點(diǎn)C.

(1)求反比例函數(shù)的解析式;
(2)將線段BC繞坐標(biāo)平面內(nèi)的某點(diǎn)M旋轉(zhuǎn)180°后B、C兩點(diǎn)恰好都落在反比例函數(shù)的圖象上,求點(diǎn)M的坐標(biāo).
分析:(1)根據(jù)絕對(duì)值及完全平方的非負(fù)性,可得出a、b的值,繼而將點(diǎn)A的坐標(biāo)代入可確定反比例函數(shù)的解析式;
(2)設(shè)線段BC繞坐標(biāo)平面內(nèi)的某點(diǎn)M旋轉(zhuǎn)180°后B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)分別為D、E,并設(shè)D(m,n),則E(m+1,n+2),代入反比例函數(shù)解析式可得出關(guān)于m、n的方程,解出可得出點(diǎn)D的坐標(biāo),再由M為BD的中點(diǎn),可得出點(diǎn)M的坐標(biāo).
解答:解:(1)∵|a+2
3
|+(b-2
3
2=0,
∴a=-2
3
,b=2
3

∴k=ab=-2
3
×2
3
=-12,
∴反比例函數(shù)的解析式為y=-
12
x
;

(2)∵直線y=2x-2與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,
∴B(1,0),C(0,-2),
設(shè)線段BC繞坐標(biāo)平面內(nèi)的某點(diǎn)M旋轉(zhuǎn)180°后B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)分別為D、E,并設(shè)D(m,n),則E(m+1,n+2),代入y=-
12
x
,
則可得
mn=-12
(m+1)(n+2)=-12
,
解得:
m=2
n=-6
 或 
m=-3
n=4

∴D(2,-6)或D(-3,4),
∵M(jìn)為BD的中點(diǎn),
∴由B(1,0),D(2,-6),得M(
3
2
,-3);
由B(1,0),D(-3,4),得M(-1,2),
∴點(diǎn)M(
3
2
,-3)或M(-1,2).
點(diǎn)評(píng):本題考查了反比例函數(shù)綜合題,涉及了待定系數(shù)法求函數(shù)解析式,難點(diǎn)在第二問,注意旋轉(zhuǎn)180°后對(duì)應(yīng)點(diǎn)坐標(biāo)的設(shè)出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•武侯區(qū)一模)小明要給剛結(jié)識(shí)的朋友小林打電話,他只記住了電話號(hào)碼的前5位的順序,后3位是3,6,8三個(gè)數(shù)字的某一種排列順序,但具體順序忘記了,那么小明第一次就撥通電話的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•武侯區(qū)一模)如圖,BC為⊙O的直徑,弦AC=3cm,AB=4cm,AD⊥AB于D.則sin∠BAD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•武侯區(qū)一模)下列計(jì)算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•武侯區(qū)一模)在反比例函數(shù)y=
a
x
中,當(dāng)x>0時(shí),y隨x的增大而增大,則二次函數(shù)y=ax2-ax的圖象大致是下圖中的(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•武侯區(qū)一模)直線l1:y=-3x+3關(guān)于直線y=x對(duì)稱的直線l2的解析式是
y=-
1
3
x+1
y=-
1
3
x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案