【題目】如圖,已知等邊△ABC的邊長為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),使AE=CF,連接AF、BE相交于點(diǎn)P,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)P經(jīng)過點(diǎn)的路徑長為__.
【答案】π.
【解析】
由等邊三角形的性質(zhì)證明△AEB≌△CFA可以得出∠APB=120°,點(diǎn)P的路徑是一段弧,由弧線長公式就可以得出結(jié)論.
:∵△ABC為等邊三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,
,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°-∠APE=120°.
∴當(dāng)AE=CF時(shí),點(diǎn)P的路徑是一段弧,且∠AOB=120°,
又∵AB=6,
∴OA=2,
點(diǎn)P的路徑是l=,
故答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】書店老板去圖書批發(fā)市場購買某種圖書,第一次用 1200 元購買若干本,按 每本 10 元出售,很快售完.第二次購買時(shí),每本書的進(jìn)價(jià)比第一次提高了 20%,他用1500 元所購買的數(shù)量比第一次多 10 本.
(1)求第一次購買的圖書,每本進(jìn)價(jià)多少元?
(2)第二次購買的圖書,按每本 10 元售出 200 本時(shí),出現(xiàn)滯銷,剩下的圖書降價(jià)后全部 售出,要使這兩次銷售的總利潤不低于 2100 元,每本至多降價(jià)多少元?(利潤=銷售收入一進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】意大利文藝復(fù)興時(shí)期的著名畫家達(dá)芬奇利用兩張一樣的紙片拼出不一樣的“空洞”,從而巧妙的證明了勾股定理.小明用兩張全等的的紙片①和②拼成如圖1所示的圖形,中間的六邊形由兩個(gè)正方形和兩個(gè)全等的直角三角形組成.已知六邊形的面積為28,.小明將紙片②翻轉(zhuǎn)后拼成如圖2所示的圖形,其中,則四邊形的面積為( )
A.16B.20C.22D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】晚飯后,小林和小京在社區(qū)廣場散步,兩人在燈下沿直線NQ移動(dòng),如圖,當(dāng)小林正好站在廣場的A點(diǎn)(距N點(diǎn)5塊地磚長)時(shí),其影長AD恰好為1塊地磚長;當(dāng)小京正好站在廣場的B點(diǎn)(距N點(diǎn)9塊地磚長)時(shí),其影長BF恰好為2塊地磚長.已知廣場地面由邊長為0.8米的正方形地磚鋪成,小林的身高AC為1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.請你根據(jù)以上信息,求出小京身高BE的長.(結(jié)果精確到0.01米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在等邊三角形中,
①如圖①,,分別是邊,上的點(diǎn),且,與交于點(diǎn),則的度數(shù)是___________度;
②如圖②,,分別是邊,延長線上的點(diǎn),且,與的延長線交于點(diǎn),此時(shí)的度數(shù)是____________度;
(2)如圖③,在中,,是銳角,點(diǎn)是邊的垂直平分線與的交點(diǎn),點(diǎn),分別在,的延長線上,且,與的延長線交于點(diǎn),若,求的大。ㄓ煤的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形的底邊長為,面積是,腰的垂直平分線分別交,邊于,點(diǎn).若點(diǎn)為邊的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),則周長的最小值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,與CA的延長線相交于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)試說明DF是⊙O的切線;
(2)若AC=3AE,求tanC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列滿足條件的三角形中,不是直角三角形的是( )
A.三內(nèi)角之比為1:2:3B.三內(nèi)角之比為3:4:5
C.三邊之比為3:4:5D.三邊之比為5:12:13
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com