【題目】如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點P作PF⊥OP且PF=PO(點F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.
(1)直接寫出點E的坐標(用含t的代數(shù)式表示):_____;
(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.
【答案】(1)、(t+6,t);(2)、當t=2時,S有最小值是16;(3)、理由見解析.
【解析】分析:(1)、過點E作EG⊥x軸于點G,根據(jù)題意得出CO=AB=6、OA=BC=4、OP=t,然后通過角之間的關(guān)系證明△PCO和△EPG全等,從而得出答案;(2)、根據(jù)DA∥EG得出△PAD和△PGE相似,求出AD的長度,然后根據(jù)四邊形的面積等于△BDF的面積加上△BDE的面積得出函數(shù)解析式,從而求出面積的最值;(3)、根據(jù)∠FBD、∠FDB、∠BFD分別為直角,證明是否存在即可得出答案.
詳解:(1)如圖所示,過點E作EG⊥x軸于點G,則∠COP=∠PGE=90°,
由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,
∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,
又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,
在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),
∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點E的坐標為(t+6,t),
(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),
∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,
∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,
∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,
∴當t=2時,S有最小值是16;
(3)①假設(shè)∠FBD為直角,則點F在直線BC上∵PF=OP<AB,
∴點F不可能在BC上,即∠FBD不可能為直角;
②假設(shè)∠FDB為直角,則點F在EF上,∵點D在矩形的對角線PE上,
∴點D不可能在EF上,即∠FDB不可能為直角;
③假設(shè)∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°如圖2,作FH⊥BD于點H,
則FH=PA,即4﹣t=6﹣t,方程無解,
∴假設(shè)不成立,即△BDF不可能是等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】某銷售商計劃購進甲、乙兩種商品共件進行銷售.已知甲種商品每件進價元,乙種商品每件進價元;通過市場考察,銷售商決定甲種商品以每件元的價格出售,乙種商品以每件元的價格出售.設(shè)銷售商購進的甲種商品有件,銷售完甲、乙兩種商品后獲得的總利潤為元
求與的函數(shù)關(guān)系式;
如果銷售商購進的甲種商品的數(shù)量不少于乙種商品數(shù)量的倍,請求出獲利最大的進貨方案,所獲得的最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用大小和形狀完全相同的小正方體木塊搭成一-個幾何體,使得它的正視圖和俯視圖如圖所示,則搭成這樣的一個幾何體至少需要小正方體木塊的個數(shù)為( )
A.22個B.19個C.16個D.13個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.
(1)求證:四邊形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=x+2與坐標軸交于A、B兩點,點A在x軸上,點B在y軸上,C點的坐標為(1,0),拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求該拋物線的解析式;
(2)根據(jù)圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;
(3)點P是拋物線上一動點,且在直線AB上方,過點P作AB的垂線段,垂足為Q點.當PQ=時,求P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在每個邊長都為1的小正方形組成的網(wǎng)格中,點A、P分別為小正方形的中點,B為格點.
(I)線段AB的長度等于_____;
(Ⅱ)在線段AB上存在一個點Q,使得點Q滿足∠PQA=45°,請你借助給定的網(wǎng)格,并利用不帶刻度的直尺作出∠PQA,并簡要說明你是怎么找到點Q的:_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組
請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的角平分線,,是的角平分線,
(1)求;
(2)繞點以每秒的速度逆時針方向旋轉(zhuǎn)秒(),為何值時;
(3)射線繞點以每秒的速度逆時針方向旋轉(zhuǎn),射線繞點以每秒的速度順時針方向旋轉(zhuǎn),若射線同時開始旋轉(zhuǎn)秒()后得到,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的邊OA在x軸上,將平行四邊形沿對角線AC對折,AO的對應(yīng)線段為AD,且點D,C,O在同一條直線上,AD與BC交于點E.
(1)求證:△ABC≌△CDA.
(2)若直線AB的函數(shù)表達式為,求三角線ACE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com