【題目】某公司計(jì)劃投資、兩種產(chǎn)品,若只投資產(chǎn)品,所獲得利潤(rùn)(萬(wàn)元)與投資金額(萬(wàn)元)之間的關(guān)系如圖所示,若只投資產(chǎn)品,所獲得利潤(rùn)(萬(wàn)元)與投資金額(萬(wàn)元)的函數(shù)關(guān)系式為.
(1)求與之間的函數(shù)關(guān)系式;
(2)若投資產(chǎn)品所獲得利潤(rùn)的最大值比投資產(chǎn)品所獲得利潤(rùn)的最大值少萬(wàn)元,求的值;
(3)該公司籌集萬(wàn)元資金,同時(shí)投資、兩種產(chǎn)品,設(shè)投資產(chǎn)品的資金為萬(wàn)元,所獲得的總利潤(rùn)記作萬(wàn)元,若時(shí),隨的增大而減少,求的取值范圍.
【答案】(1);(2);(3)
【解析】
(1)由圖象可得函數(shù)拋物線的頂點(diǎn)坐標(biāo)及經(jīng)過(guò)的點(diǎn),由待定系數(shù)法即可求解;
(2)由(1)可得的最大值,由的函數(shù)解析式求出產(chǎn)品所獲得利潤(rùn)的最大值,再依據(jù)題意列方程求解即可;
(3)由得,依據(jù)題意由二次函數(shù)性質(zhì)可得拋物線對(duì)稱軸在30的左邊,由此得關(guān)于n的不等式求解即可.
解:(1)由圖象可知點(diǎn)是拋物線的頂點(diǎn)坐標(biāo),
設(shè)與之間的函數(shù)關(guān)系式為,
又點(diǎn)在拋物線上,
,
解得.
與之間的函數(shù)關(guān)系式為;
(2)由(1)得,投資產(chǎn)品所獲得利潤(rùn)的最大值為,
,
投資產(chǎn)品所獲得利潤(rùn)的最大值為.
由題意可得,,解得.
當(dāng)時(shí)不符合題意,
;
(3)由題意可得,.
當(dāng)時(shí),隨的增大而減小,
解得.
的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中的三點(diǎn)A(1,0),B(-1,0),P(0,-1),將線段AB沿y軸向上平移m(m>0)個(gè)單位長(zhǎng)度,得到線段CD,二次函數(shù)y=a(x-h)2+k的圖象經(jīng)過(guò)點(diǎn)P,C,D.
(1)當(dāng)m=1時(shí),a=______;當(dāng)m=2時(shí),a=______;
(2)猜想a與m的關(guān)系,并證明你的猜想;
(3)將線段AB沿y軸向上平移n(n>0)個(gè)單位長(zhǎng)度,得到線段C1D1,點(diǎn)C1,D1分別與點(diǎn)A,B對(duì)應(yīng),二次函數(shù)y=2a(x-h)2+k的圖象經(jīng)過(guò)點(diǎn)P,C1,D1.
①求n與m之間的關(guān)系;
②當(dāng)△COD1是直角三角形時(shí),直接寫(xiě)出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)利用數(shù)學(xué)知識(shí)測(cè)量建筑物DEFG的高度.他從點(diǎn)出發(fā)沿著坡度為的斜坡AB步行26米到達(dá)點(diǎn)B處,用測(cè)角儀測(cè)得建筑物頂端的仰角為37°,建筑物底端的俯角為30°,若AF為水平的地面,側(cè)角儀豎直放置,其高度BC=1.6米,則此建筑物的高度DE約為(精確到米,參考數(shù)據(jù):,)( )
A.米B.米C.米D.米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司開(kāi)發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6元/件,該產(chǎn)品在正式投放市場(chǎng)前通過(guò)代銷(xiāo)點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試銷(xiāo)售,售價(jià)為8元/件,工作人員對(duì)銷(xiāo)售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象(如圖),圖中的折線ODE表示日銷(xiāo)售量y(件)與銷(xiāo)售時(shí)間x(天)之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時(shí)間每增加1天,日銷(xiāo)售量減少5件.
(1)第24天的日銷(xiāo)售量是 件,日銷(xiāo)售利潤(rùn)是 元;
(2)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(3)日銷(xiāo)售利潤(rùn)不低于640元的天數(shù)共有多少天?試銷(xiāo)售期間,日銷(xiāo)售最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將一個(gè)正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個(gè)正方形繞其中心最少旋轉(zhuǎn) 45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個(gè)正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長(zhǎng)為,則所得正八邊形的面積為_______.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn) M 的坐標(biāo)為(4,3),點(diǎn) M 關(guān)于直線 l:y=﹣x+b 的對(duì)稱點(diǎn)落在坐標(biāo)軸上,則 b的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,以點(diǎn)為圓心,以為半徑作優(yōu)弧,交于點(diǎn),交于點(diǎn).點(diǎn)在優(yōu)弧上從點(diǎn)開(kāi)始移動(dòng),到達(dá)點(diǎn)時(shí)停止,連接.
(1)當(dāng)時(shí),判斷與優(yōu)弧的位置關(guān)系,并加以證明;
(2)當(dāng)時(shí),求點(diǎn)在優(yōu)弧上移動(dòng)的路線長(zhǎng)及線段的長(zhǎng).
(3)連接,設(shè)的面積為,直接寫(xiě)出的取值范圍.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)專賣(mài)店銷(xiāo)售A、B兩種型號(hào)的新能源汽車(chē).上周售出1輛A型車(chē)和3輛B型車(chē),兩種車(chē)型的銷(xiāo)售總額為96萬(wàn)元;本周銷(xiāo)售2輛A型車(chē)和1輛B型車(chē),兩種車(chē)型的銷(xiāo)售總額為62萬(wàn)元,已知兩種型號(hào)汽車(chē)銷(xiāo)售價(jià)格始終不變.
(1)求A、B兩種車(chē)型的銷(xiāo)售單價(jià)分別是多少?
(2)第三周計(jì)劃售出A、B兩種型號(hào)的車(chē)共5輛,若銷(xiāo)售總額不少于100萬(wàn)元,則B型車(chē)至少要售出多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過(guò)平移后得到△A1B1C1,已知點(diǎn)C的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為(4,﹣1),畫(huà)出△A1B1C1并寫(xiě)出頂點(diǎn)A,B對(duì)應(yīng)點(diǎn)A1,B1的坐標(biāo);
(2)將△ABC繞著點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°得到△A2B2C2,畫(huà)出△A2B2C2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com