【題目】小明在求同一坐標軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標系內任意兩點P1(x1 , y1),P2(x2 , y2),可通過構造直角三角形利用圖1得到結論:P1P2= 他還利用圖2證明了線段P1P2的中點P(x,y)P的坐標公式:x= ,y=

(1)請你幫小明寫出中點坐標公式的證明過程;
(2)①已知點M(2,﹣1),N(﹣3,5),則線段MN長度為;
②直接寫出以點A(2,2),B(﹣2,0),C(3,﹣1),D為頂點的平行四邊形頂點D的坐標:;
(3)如圖3,點P(2,n)在函數(shù)y= x(x≥0)的圖象OL與x軸正半軸夾角的平分線上,請在OL、x軸上分別找出點E、F,使△PEF的周長最小,簡要敘述作圖方法,并求出周長的最小值.

【答案】
(1)

證明:∵P1(x1,y1),P2(x2,y2),

∴Q1Q2=OQ2﹣OQ1=x2﹣x1,

∴Q1Q= ,

∴OQ=OQ1+Q1Q=x1+ = ,

∵PQ為梯形P1Q1Q2P2的中位線,

∴PQ= = ,

即線段P1P2的中點P(x,y)P的坐標公式為x= ,y=


(2) ;(﹣3,3)或(7,1)或(﹣1,﹣3)
(3)

解:如圖,設P關于直線OL的對稱點為M,關于x軸的對稱點為N,連接PM交直線OL于點R,連接PN交x軸于點S,連接MN交直線OL于點E,交x軸于點F,

又對稱性可知EP=EM,F(xiàn)P=FN,

∴PE+PF+EF=ME+EF+NF=MN,

∴此時△PEF的周長即為MN的長,為最小,

設R(x, x),由題意可知OR=OS=2,PR=PS=n,

=2,解得x=﹣ (舍去)或x= ,

∴R( , ),

=n,解得n=1,

∴P(2,1),

∴N(2,﹣1),

設M(x,y),則 = , = ,解得x= ,y= ,

∴M( , ),

∴MN= = ,

即△PEF的周長的最小值為


【解析】(2)①∵M(2,﹣1),N(﹣3,5),
∴MN= = ,
所以答案是:
②∵A(2,2),B(﹣2,0),C(3,﹣1),
∴當AB為平行四邊形的對角線時,其對稱中心坐標為(0,1),
設D(x,y),則x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,
∴此時D點坐標為(﹣3,3),
當AC為對角線時,同理可求得D點坐標為(7,1),
當BC為對角線時,同理可求得D點坐標為(﹣1,﹣3),
綜上可知D點坐標為(﹣3,3)或(7,1)或(﹣1,﹣3),
所以答案是:(﹣3,3)或(7,1)或(﹣1,﹣3);
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和軸對稱-最短路線問題的相關知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;已知起點結點,求最短路徑;與確定起點相反,已知終點結點,求最短路徑;已知起點和終點,求兩結點之間的最短路徑;求圖中所有最短路徑.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一輛轎車從甲城駛往乙城,同時一輛卡車從乙城駛往甲城,兩車沿相同路線勻速行駛,轎車到達乙城停留一段時間后,按原路原速返回甲城;卡車到達甲城比轎車返回甲城早0.5小時,轎車比卡車每小時多行駛60千米,兩車到達甲城弧均停止行駛,兩車之間的路程y(千米)與轎車行駛時間t(小時)的函數(shù)圖象如圖所示,請結合圖象提供的信息解答下列問題:
(1)請直接寫出甲城和乙城之間的路程,并求出轎車和卡車的速度;
(2)求轎車在乙城停留的時間,并直接寫出點D的坐標;
(3)請直接寫出轎車從乙城返回甲城過程中離甲城的路程s(千米)與轎車行駛時間t(小時)之間的函數(shù)關系式(不要求寫出自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,點D為三角形內一點,且∠ACD=∠DAB=∠DBC.
(1)求∠CDB的度數(shù);
(2)求證:△DCA∽△DAB;
(3)若CD的長為1,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題是真命題的是( )
A.若一組數(shù)據(jù)是1,2,3,4,5,則它的方差是3
B.若分式方程 有增根,則它的增根是1
C.對角線互相垂直的四邊形,順次連接它的四邊中點所得四邊形是矩形
D.若一個角的兩邊分別與另一個角的兩邊平行,則這兩個角相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設A= ÷(a﹣ ).
(1)化簡A;
(2)當a=3時,記此時A的值為f(3);當a=4時,記此時A的值為f(4);… 解關于x的不等式: ≤f(3)+f(4)+…+f(11),并將解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年里約奧運會,中國跳水隊贏得8個項目中的7塊金牌,優(yōu)秀成績的取得離不開艱辛的訓練.某跳水運動員在進行跳水訓練時,身體(看成一點)在空中的運動路線是如圖所示的一條拋物線,已知跳板AB長為2米,跳板距水面CD的高BC為3米,訓練時跳水曲線在離起跳點水平距離1米時達到距水面最大高度k米,現(xiàn)以CD為橫軸,CB為縱軸建立直角坐標系.
(1)當k=4時,求這條拋物線的解析式;
(2)當k=4時,求運動員落水點與點C的距離;
(3)圖中CE= 米,CF= 米,若跳水運動員在區(qū)域EF內(含點E,F(xiàn))入水時才能達到訓練要求,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則正比例函數(shù)y=(b+c)x與反比例函數(shù)y= 在同一坐標系中的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā),圖中l(wèi)1 , l2表示兩人離A地的距離s(km)與時間t(h)的關系,請結合圖象解答下列問題:
(1)表示乙離A地的距離與時間關系的圖象是(填l1或l2); 甲的速度是km/h,乙的速度是km/h;
(2)甲出發(fā)多少小時兩人恰好相距5km?

查看答案和解析>>

同步練習冊答案