如圖,直線MN與x軸,y軸分別相交于A,C兩點,分別過A,C兩點作x軸,y軸的垂線相交于B點,且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實數(shù)根.

(1)求C點坐標;

(2)求直線MN的解析式;

(3)在直線MN上存在點P,使以點P,B,C三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標.

 

【答案】

(1)C(0,6)。

(2)y=x+6。

(3)P1(4,3),P2)P3),P4)。

【解析】

試題分析:(1)通過解方程x2﹣14x+48=0可以求得OC=6,OA=8.則C(0,6)。

解方程x2﹣14x+48=0得x1=6,x2=8。

∵OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實數(shù)根,

∴OC=6,OA=8.∴C(0,6)。

(2)設(shè)直線MN的解析式是y=kx+b(k≠0),把點A、C的坐標分別代入解析式,列出關(guān)于系數(shù)k、b的方程組,通過解方程組即可求得它們的值。

設(shè)直線MN的解析式是y=kx+b(k≠0),

由(1)知,OA=8,則A(8,0)。

∵點A、C都在直線MN上,

,解得。

∴直線MN的解析式為y=x+6。

(3)需要分類討論:PB為腰,PB為底兩種情況下的點P的坐標.根據(jù)等腰三角形的性質(zhì)、勾股定理以及一次函數(shù)圖象上點的坐標特征進行解答:

∵A(8,0),C(0,6),∴根據(jù)題意知B(8,6)。

∵點P在直線MN:y=x+6上,∴設(shè)P(a, a+6)。

當以點P,B,C三點為頂點的三角形是等腰三角形時,需要分類討論:

①當PC=PB時,點P是線段BC的中垂線與直線MN的交點,則P1(4,3)。

②當PC=BC時,a2+(a+6﹣6)2=64,解得,a=,則P2),P3)。

③當PB=BC時,(a﹣8)2+(a+6﹣6)2=64,解得,a=,則P4)。

綜上所述,符合條件的點P有:P1(4,3),P2)P3),P4)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•綏化)如圖,直線MN與x軸,y軸分別相交于A,C兩點,分別過A,C兩點作x軸,y軸的垂線相交于B點,且OA,OC(OA>OC)的長分別是一元二次方程x2-14x+48=0的兩個實數(shù)根.
(1)求C點坐標;
(2)求直線MN的解析式;
(3)在直線MN上存在點P,使以點P,B,C三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線MN與x軸,y軸分別相交于A,C兩點,分別過A,C兩點作x軸,y軸的垂線相交于B點,且OA,OC(OA>OC)的長分別是一元二次方程x2-14x+48=0的兩個實數(shù)根.
(1)求C點坐標;
(2)求直線MN的解析式;
(3)在直線MN上存在點P,使以點P,B,C三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線MN與x軸,y軸分別相交于A,C兩點,分別過A,C兩點作x軸,y軸的垂線相交于B點,且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實數(shù)根.

(1)求C點坐標;

(2)求直線MN的解析式;

(3)在直線MN上存在點P,使以點P,B,C三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年遼寧營口大石橋市九年級第一學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,直線MN與x軸,y軸分別相交于A,C兩點,分別過A,C兩點作x軸,y軸的垂線相交于B點,且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實數(shù)根.

(1)求C點坐標;

(2)求直線MN的解析式;

(3)在直線MN上存在點P,使以點P,B,C三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標.

 

查看答案和解析>>

同步練習(xí)冊答案