【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數(shù).
【答案】(1)證明見(jiàn)解析;(2)∠AED+∠D=180°,理由見(jiàn)解析;(3)110°
【解析】
(1)依據(jù)同位角相等,即可得到兩直線平行;
(2)依據(jù)平行線的性質(zhì),可得出∠FGD=∠EFG,進(jìn)而判定AB∥CD,即可得出∠AED+∠D=180°;
(3)依據(jù)已知條件求得∠CGF的度數(shù),進(jìn)而利用平行線的性質(zhì)得出∠CEF的度數(shù),依據(jù)對(duì)頂角相等即可得到∠AEM的度數(shù).
(1)∵∠CED=∠GHD,
∴CB∥GF;
(2)∠AED+∠D=180°;
理由:∵CB∥GF,
∴∠C=∠FGD,
又∵∠C=∠EFG,
∴∠FGD=∠EFG,
∴AB∥CD,
∴∠AED+∠D=180°;
(3)∵∠GHD=∠EHF=80°,∠D=30°,
∴∠CGF=80°+30°=110°,
又∵CE∥GF,
∴∠C=180°﹣110°=70°,
又∵AB∥CD,
∴∠AEC=∠C=70°,
∴∠AEM=180°﹣70°=110°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷某種玩具,該玩具每個(gè)進(jìn)價(jià) 20 元,為進(jìn)行促銷,商店制定如下“優(yōu)惠” 方案:如果一次銷售數(shù)量不超過(guò) 5 個(gè),則每個(gè)按 50 元銷售:如果一次銷售數(shù)量超過(guò) 5 個(gè),則每增加一個(gè),所有玩具均降低 1 元銷售,但單價(jià)不得低于 30 元,一次銷售該玩具的單價(jià) y(元)與銷售數(shù)量 x(個(gè))之間的函數(shù)關(guān)系如下圖所示.
(1)結(jié)合圖形,求出 m 的值;射線 BC 所表示的實(shí)際意義是什么;
(2)求線段 AB 滿足的 y 與 x 之間的函數(shù)解析式,并直接寫(xiě)出自變量的取值范圍;
(3)當(dāng)銷售 15 個(gè)時(shí),商店的利潤(rùn)是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一空曠場(chǎng)地上設(shè)計(jì)一落地為矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m長(zhǎng)的繩子一端固定在B點(diǎn)處,小狗在不能進(jìn)入小屋內(nèi)的條件下活動(dòng),其可以活動(dòng)的區(qū)域面積為S(m2).
①如圖1,若BC=4m,則S=m.
②如圖2,現(xiàn)考慮在(1)中的矩形ABCD小屋的右側(cè)以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其它條件不變.則在BC的變化過(guò)程中,當(dāng)S取得最小值時(shí),邊BC的長(zhǎng)為m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一次測(cè)繪活動(dòng)中,某同學(xué)站在點(diǎn)A處觀測(cè)停放于B、C兩處的小船,測(cè)得船B在點(diǎn)A北偏東75°方向150米處,船C在點(diǎn)A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BEC=95°,∠ABE=120°,∠DCE=35°,則AB與CD平行嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E,F分別是AB,CD上的點(diǎn),點(diǎn)G是BC的延長(zhǎng)線上一點(diǎn),且∠B=∠DCG=∠D,則下列判斷中,錯(cuò)誤的是( )
A. ∠AEF=∠EFC B. ∠A=∠BCF C. ∠AEF=∠EBC D. ∠BEF+∠EFC=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有個(gè)點(diǎn)A(-1,O),點(diǎn)A第1次向上跳動(dòng)一個(gè)單位至點(diǎn)A1(-1,1),緊接著第2次向右跳動(dòng)2個(gè)單位至點(diǎn)A2(1,1),第3次向上跳動(dòng)1個(gè)單位,第4次向左跳動(dòng)3個(gè)單位,第5次又向上跳動(dòng)1個(gè)單位,第6次向右跳動(dòng)4個(gè)單位,…,依次規(guī)律跳動(dòng)下去,點(diǎn)A第2015次跳動(dòng)至點(diǎn)A2015的坐標(biāo)是 ( )
A. (-503, 1008) B. (503, 1007) C. (-504, 1007) D. (504, 1008)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀:已知a+b=﹣4,ab=3,求a2+b2的值.
解:∵a+b=﹣4,ab=3,
∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.
請(qǐng)你根據(jù)上述解題思路解答下面問(wèn)題:
(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.
(2)已知a﹣c﹣b=﹣10,(a﹣b)c=﹣12,求(a﹣b)2+c2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,
(1)問(wèn)直線EF與AB有怎樣的位置關(guān)系?加以證明;
(2)若∠CEF=70°,求∠ACB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com