閱讀下列材料:
為了求1+2+22+23+…+22011的值,可令S=1+2+22+23+…+22011①,
則 2S=2+22+23+…+22012②,
②-①得  2S-S=22012-1,即S=22012-1,
∴1+2+22+23+…+22011=22012-1
仿照以上推理,請計算:1+4+42+43…+42011
分析:把所求算式乘以4,然后相減并整理即可得解.
解答:解:設S=1+4+42+43…+42011①,
則4S=4+42+43…+42012②,
②-①得,3S=42012-1,
所以,S=
42012-1
3
點評:本題考查了有理數(shù)的乘方,讀懂題目信息,理解這列數(shù)求和的計算方法是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

先閱讀下列材料,再解答后面的問題.
材料:密碼學是一門很神秘、很有趣的學問,在密碼學中,直接可以看到的信息稱為明碼,加密后的信息稱為密碼,任何密碼只要找到了明碼與密碼的對應關系--密鑰,就可以破譯它.
密碼學與數(shù)學是有關系的.為此,八年一班數(shù)學興趣小組經(jīng)過研究實驗,用所學的一次函數(shù)知識制作了一種密鑰的編制程序.他們首先設計了一個“字母--明碼對照表”:
字母 A B C D E F G H I J K L M
明碼 1 2 3 4 5 6 7 8 9 10 11 12 13
字母 N O P Q R S T U V W X Y Z
明碼 14 15 16 17 18 19 20 21 22 13 24 25 26
例如,以y=3x+13為密鑰,將“自信”二字進行加密轉換后得到下表:
漢字
拼音 Z I X I N
明碼:x 26 9 24 9 14
密鑰:y=精英家教網(wǎng)
密碼:y 91 40      
因此,“自”字加密轉換后的結果是“9140”.
問題:
(1)請你求出當密鑰為y=3x+13時,“信”字經(jīng)加密轉換后的結果;
(2)為了提高密碼的保密程度,需要頻繁地更換密鑰.若“自信”二字用新的密鑰加密轉換后得到下表:
漢字
拼音 Z I X I N
明碼:x 26 9 24 9 14
密鑰:y=精英家教網(wǎng)
密碼:y 70 36      
請求出這個新的密鑰,并直接寫出“信”字用新的密鑰加密轉換后的結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問題:
我們知道二元一次方程組
2x+3y=12
3x-3y=6
的求解方法是消元法,即可將它化為一元一次方程來解,可求得方程組
2x+3y=12
3x-3y=6
有唯一解.
我們也知道二元一次方程2x+3y=12的解有無數(shù)個,而在實際問題中我們往往只需要求出其正整數(shù)解.下面是求二元一次方程2x+3y=12的正整數(shù)解的過程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x
∵x、y為正整數(shù),∴
x>0
12-2x>0
則有0<x<6
又y=4-
2
3
x為正整數(shù),則
2
3
x為正整數(shù),所以x為3的倍數(shù).
又因為0<x<6,從而x=3,代入:y=4-
2
3
×3=2
∴2x+3y=12的正整數(shù)解為
x=3
y=2

解決問題:
(1)九年級某班為了獎勵學習進步的學生,花費35元購買了筆記本和鋼筆兩種獎品,其中筆記本的單價為3元/本,鋼筆單價為5元/支,問有幾種購買方案?
(2)試求方程組
2x+y+z=10
3x+y-z=12
的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問題:
我們知道二元一次方程組
2x+3y=12
3x-3y=6
的求解方法是消元法,即可將它化為一元一次方程來解,可求得方程組
2x+3y=12
3x-3y=6
有唯一解.
我們也知道二元一次方程2x+3y=12的解有無數(shù)個,而在實際問題中我們往往只需要求出其正整數(shù)解.
下面是求二元一次方程2x+3y=12的正整數(shù)解的過程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x

∵x、y為正整數(shù),∴
x>0
12-2x>0
則有0<x<6
又y=4-
2
3
x
為正整數(shù),則
2
3
x
為正整數(shù),所以x為3的倍數(shù)
又因為0<x<6,從而x=3,代入:y=4-
2
3
×3
=2
∴2x+3y=12的正整數(shù)解為
x=3
y=2

問題:(1)若 
6
x-2
為正整數(shù),則滿足條件的x的值有幾個.( 。
A、2    B、3    C、4   D、5
      (2)九年級某班為了獎勵學習進步的學生,花費35元購買了筆記本和鋼筆兩種獎品,其中筆記本的單價為3元/本,鋼筆單價為5元/支,問有幾種購買方案?
      (3)試求方程組
2x+y+z=10
3x+y-z=12
 的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀下列材料:
為了求1+2+22+23+…+22011的值,可令S=1+2+22+23+…+22011①,
則 2S=2+22+23+…+22012②,
②-①得 2S-S=22012-1,即S=22012-1,
∴1+2+22+23+…+22011=22012-1
仿照以上推理,請計算:1+4+42+43…+42011

查看答案和解析>>

同步練習冊答案