【題目】設(shè)等邊三角形的內(nèi)切圓半徑為外接圓半徑為,平面內(nèi)任意一點(diǎn)到等邊三角形中心的距離為若滿足則稱點(diǎn)叫做等邊三角形的中心關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系中,等邊的三個(gè)頂點(diǎn)的坐標(biāo)分別為.
(1)①等邊中心的坐標(biāo)為 ;
②已知點(diǎn)在中,是等邊的中心關(guān)聯(lián)點(diǎn)的是 ;
(2)如圖1,過點(diǎn)作直線交軸正半軸于使.
①若線段上存在等邊的中心關(guān)聯(lián)點(diǎn)求的取值范圍;
②將直線向下平移得到直線當(dāng)滿足什么條件時(shí),直線上總存在等邊的中心關(guān)聯(lián)點(diǎn);
(3)如圖2,點(diǎn)為直線上一動(dòng)點(diǎn),的半徑為當(dāng)從點(diǎn)出發(fā),以每秒個(gè)單位的速度向右移動(dòng),運(yùn)動(dòng)時(shí)間為秒.是否存在某一時(shí)刻使得上所有點(diǎn)都是等邊的中心關(guān)聯(lián)點(diǎn)?如果存在,請(qǐng)直接寫出所有符合題意的的值;如果不存在,請(qǐng)說明理由.
【答案】(1)①;②;(2)①,②滿足條件的的值為;(3)存在. 或.
【解析】
(1)①求出OA=OB=OC=2,即可得等邊中心的坐標(biāo);
②分別求出OD,OE,OF,然后根據(jù)中心關(guān)聯(lián)點(diǎn)的定義判斷;
(2)①易得直線的解析式,判斷出點(diǎn)在直線AM上,根據(jù)點(diǎn)P在AE上時(shí),可得此時(shí)點(diǎn)P都是等邊△ABC的中心關(guān)聯(lián)點(diǎn);
②如圖1-2中,設(shè)平移后的直線交軸于點(diǎn),過點(diǎn)作這條直線的垂線,垂足為,求出時(shí)OG的長,即可得到b的取值范圍;
(3)如圖2中,設(shè)Q(s,1),由題意得當(dāng)OQ=時(shí),⊙Q上所有點(diǎn)都是等邊△ABC的中心關(guān)聯(lián)點(diǎn),求出s即可得解.
解:(1)①∵,
∴OA=2,OB=,OC=,
∴等邊中心的坐標(biāo)為;
②由題意得:,點(diǎn)是的中心,
,
點(diǎn)是的中心關(guān)聯(lián)點(diǎn);
(2)①如圖1-1中,
∵OA=2,,
∴OM=,
易得直線的解析式為:,
∴在直線上,
因?yàn)?/span>,
所以為等邊三角形,
所以邊上的高長為,
當(dāng)點(diǎn)在上時(shí),,
所以當(dāng)點(diǎn)在上時(shí),點(diǎn)都是等邊的中心關(guān)聯(lián)點(diǎn),
所以;
如圖1-2中,設(shè)平移后的直線交軸于點(diǎn)過點(diǎn)作這條直線的垂線,垂足為,
當(dāng)時(shí),在中,,
,
,
滿足條件的的值為;
存在,
理由:如圖2中,設(shè),
由題意得,當(dāng)時(shí),上所有點(diǎn)都是等邊的中心關(guān)聯(lián)點(diǎn),
∴,
解得:,
或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A、B、C三點(diǎn)的坐標(biāo)分別為:A(1,4)、B(0,3)、C(3,0),若P為x軸上一點(diǎn),且∠BPC=2∠ACB,則點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是邊AD上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A,D不重合),連接EO并延長,交BC于點(diǎn)F,連接BE,DF.下列說法:
① 對(duì)于任意的點(diǎn)E,四邊形BEDF都是平行四邊形;
② 當(dāng)∠ABC>90°時(shí),至少存在一個(gè)點(diǎn)E,使得四邊形BEDF是矩形;
③ 當(dāng)AB<AD時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是菱形;
④ 當(dāng)∠ADB=45°時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是正方形.
所有正確說法的序號(hào)是:_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】再讀教材:寬與長的比是(約為0.618)的矩形叫作黃金矩形.黃金矩形給我們以協(xié)調(diào)、勻稱的美感,世界各國許多著名的建筑,為取得最佳的視覺效果,都采用了黃金矩形的設(shè)計(jì).下面,我們用寬為2的矩形紙片折疊黃金矩形(提示:).
第一步:在矩形紙片一端 ,利用圖1的方法折出一個(gè)正方形,然后把紙片展平;
第二步:如圖2,把這個(gè)正方形折成兩個(gè)相等的矩形,再把紙片展平;
圖1 圖2
第三步:折出內(nèi)側(cè)矩形的對(duì)角線,并把折到圖3中所示的處;
第四步:展平紙片,按照所得的點(diǎn)折出,使,則圖4中就會(huì)出現(xiàn)黃金矩形.
圖3 圖4
(1)在圖3中_________ (保留根號(hào));
(2)如圖3,則四邊形的形狀是_________;
(3)在圖4中黃金矩形是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)分別是邊上的兩點(diǎn),且分別交于.下列結(jié)論:①;②平分;③;④.其中正確的結(jié)論是( )
A.②③④B.①④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,OE⊥BC垂足為E,AB⊥CD垂足為F.
(1)求證:AD=2OE;
(2)若∠ABC=30°,⊙O的半徑為2,求兩陰影部分面積的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣2ax+c(a<0)的圖象過點(diǎn)A(3,m).
(1)當(dāng)a=﹣1,m=0時(shí),求拋物線的頂點(diǎn)坐標(biāo)_____;
(2)如圖,直線l:y=kx+c(k<0)交拋物線于B,C兩點(diǎn),點(diǎn)Q(x,y)是拋物線上點(diǎn)B,C之間的一個(gè)動(dòng)點(diǎn),作QD⊥x軸交直線l于點(diǎn)D,作QE⊥y軸于點(diǎn)E,連接DE.設(shè)∠QED=β,當(dāng)2≤x≤4時(shí),β恰好滿足30°≤β≤60°,a=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,與軸交于點(diǎn)C,與軸的正半軸交于點(diǎn)K,過點(diǎn)作軸交拋物線于另一點(diǎn)B,點(diǎn)在軸的負(fù)半軸上,連結(jié)交軸于點(diǎn)A,若.
(1)用含的代數(shù)式表示的長;
(2)當(dāng)時(shí),判斷點(diǎn)是否落在拋物線上,并說明理由;
(3)過點(diǎn)作軸交軸于點(diǎn)延長至,使得連結(jié)交軸于點(diǎn)連結(jié)AE交軸于點(diǎn)若的面積與的面積之比為則求出拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月15日,我國“兩會(huì)”落下帷幕.13天時(shí)間里,來自各地的5000余名代表、委員聚于國家政治中心,共議國家發(fā)展大計(jì).某校初三(3)班張老師為了了解同學(xué)們對(duì)“兩會(huì)”知識(shí)的知曉情況,進(jìn)行了一次小測(cè)試,測(cè)試滿分100分.其中
A組同學(xué)的測(cè)試成績分別為:91 91 86 93 85 89 89 88 87 91
B組同學(xué)的測(cè)試成績分別為:88 97 88 85 86 94 84 83 98 87
根據(jù)以上數(shù)據(jù),回答下列問題:
(1)完成下表:
組別 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
A組 | 89 | 89 | b | c |
B組 | 89 | a | 88 | 26.2 |
其中a= ,b= ,c= ,
(2)張老師將B組同學(xué)的測(cè)試成績分成四組并繪制成如圖所示頻數(shù)分布直方圖(不完整),請(qǐng)補(bǔ)全;
(3)根據(jù)以上分析,你認(rèn)為 組(填“A”或“B”)的同學(xué)對(duì)今年“兩會(huì)”知識(shí)的知曉情況更好一些,請(qǐng)寫出你這樣判斷的理由(至少寫兩條):① ② .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com