【題目】為了提高學校的就餐效率,巫溪中學實踐小組對食堂就餐情況進行調(diào)研后發(fā)現(xiàn):在單位時間內(nèi),每個窗口買走午餐的人數(shù)和因不愿長久等待而到小賣部的人數(shù)各是一個固定值,并且發(fā)現(xiàn)若開一個窗口,45分鐘可使等待的人都能買到午餐,若同時開2個窗口,則需30分鐘.還發(fā)現(xiàn),若能在15分鐘內(nèi)買到午餐,那么在單位時間內(nèi),去小賣部就餐的人就會減少80%.在學??cè)藬?shù)一定且人人都要就餐的情況下,為方便學生就餐,總務處要求食堂在10分鐘內(nèi)賣完午餐,至少要同時開多少______個窗口.

【答案】6

【解析】

設每個窗口每分鐘能賣人的午餐,每分鐘外出就餐有人,學生總數(shù)為人,并設要同時開個窗口,根據(jù)并且發(fā)現(xiàn)若開1個窗口,45分鐘可使等待人都能買到午餐;若同時開2個窗口,則需30分鐘.還發(fā)現(xiàn),若在15分鐘內(nèi)等待的學生都能買到午餐,在單位時間內(nèi),外出就餐的人數(shù)可減少80%.在學校學生總?cè)藬?shù)不變且人人都要就餐的情況下,為了方便學生就餐,調(diào)查小組建議學校食堂15分鐘內(nèi)賣完午餐,可列出不等式求解.

解:設每個窗口每分鐘能賣人的午餐,每分鐘外出就餐有人,學生總數(shù)為人,并設要同時開個窗口,依題意有

由①、②得,代入③得,

所以.

因此,至少要同時開6個窗口.

故答案為:6

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,點為射線上一點,的延長線于點,若,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,地面BD上兩根等長立柱AB,CD之間有一根繩子可看成拋物線y0.1x20.8x+5

1)求繩子最低點離地面的距離;

2)因?qū)嶋H需要,在離AB5米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點距MN1米,離地面2米,求MN的長;

3)將立柱MN的長度提升為5米,通過調(diào)整MN的位置,使拋物線F2對應函數(shù)的二次項系數(shù)始終為.設MNAB的距離為m,拋物線F2的頂點離地面距離為k,但2≤k≤3時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtΔABC,∠C=90°,AC=4cm,BC=3cm,動點M、N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A、B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PMPN,MN,設移動時間為t(單位:秒,0<t<2.5).

(1)當t為何值時,ΔMCN面積為2cm?

(2)是否存在某一時刻t,使四邊形APNC的面積為cm?若存在,求t的值,若不存在,請說明理由;

(3)當t為何值時,以A、P、M為頂點的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,BD的垂直平分線交ADE,交BCF,連接BE 、DF.

1)判斷四邊形BEDF的形狀,并說明理由;

2)若AB=8,AD=16,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列材料,然后解后面的問題.

材料:一個三位自然數(shù) (百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c),若滿足a+c=b,則稱這個三位數(shù)為歡喜數(shù),并規(guī)定F=ac.如374,因為它的百位上數(shù)字3與個位數(shù)字4之和等于十位上的數(shù)字7,所以374歡喜數(shù),F374=3×4=12

1)對于歡喜數(shù),若滿足b能被9整除,求證:歡喜數(shù)能被99整除;

2)已知有兩個十位數(shù)字相同的歡喜數(shù)”mnmn),若Fm﹣Fn=3,求m﹣n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADBC,∠D90°AD2,BC12,DC10,若在邊DC上有點P,使PADPBC相似,則這樣的點P_____個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明到商場購買某個牌子的鉛筆支,用了元(為整數(shù)).后來他又去商場時,發(fā)現(xiàn)這種牌子的鉛筆降階,于是他比上一次多買了支鉛筆,用了元錢,那么小明兩次共買了鉛筆________支.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3×3的方格紙中,點AB、CD、E、F分別位于如圖所示的小正方形的頂點上.

1】從A、D、E、F四點中任意取一點,以所取的這一點及BC為頂點三角形,則所畫三角形是等腰三角形的概率是

2】從AD、E、F四點中先后任意取兩個不同的點,以所取的這兩點及B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率(用樹狀圖或列表求解).

查看答案和解析>>

同步練習冊答案