【題目】問題探究:如圖①,在正方形中,點(diǎn)在邊上,點(diǎn)在邊上,且.線段相交于點(diǎn),的中線.

1)求證:

2)線段之間的數(shù)量關(guān)系為

問題拓展:如圖②,在矩形中,,點(diǎn)在邊上,點(diǎn)在邊上,且,,線段相交于點(diǎn).若的中線,則線段的長為

【答案】(1)詳見解析;(2),證明詳見解析;問題拓展:

【解析】

1)由正方形的性質(zhì)得出∠BAD=D=90°,AB=DA,由SAS證明ABE≌△DAF即可;

2)由全等三角形的性質(zhì)得出∠ABE=DAF,證出∠BGF=ABE+BAG=90°,在RtBFG中,由直角三角形斜邊上的中線性質(zhì)得出BF=2GH;

問題拓展:由三角函數(shù)得出∠ABE=DAF,證出∠BGF=90°,在RtBFG中,由直角三角形斜邊上的中線性質(zhì)得出BF=2GH,由矩形的性質(zhì)得出∠C=90°,BC=AD=6CD=AB=4,得出CF=CD-DF=1,由勾股定理求出BF=,即可得出GH的長.

1)證明:∵四邊形ABCD是正方形,

∴∠BAD=D=90°,AB=DA

ABEDAF中,

∴△ABE≌△DAFSAS);

2)解:BF=2GH;理由如下:

∵△ABE≌△DAF,

∴∠ABE=DAF

∵∠DAF+BAG=BAD=90°,

∴∠ABE+BAG=90°

∴∠BGF=ABE+BAG=90°,

RtBFG中,GH是邊BF的中線,

BF=2GH;

問題拓展:

解:∵tanABE=,tanDAF=

∴∠ABE=DAF,

∵∠DAF+BAG=BAD=90°,

∴∠ABE+BAG=90°

∴∠AGB=90°,

∴∠BGF=90°,

RtBFG中,GH是邊BF的中線,

BF=2GH

∵四邊形ABCD是矩形,

∴∠C=90°,BC=AD=6,CD=AB=4

CF=CD-DF=1,

BF=,

GH=BF=;

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,,將繞點(diǎn)逆時針旋轉(zhuǎn)至,使得點(diǎn)恰好落在上,交于點(diǎn),則的面積為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)決定開展課后服務(wù)活動,學(xué)校就“你最想開展哪種課后服務(wù)項(xiàng)目”問題進(jìn)行了隨機(jī)問卷調(diào)查,調(diào)查分為四個類別:.舞蹈;.繪畫與書法;.球類;.不想?yún)⒓樱F(xiàn)根據(jù)調(diào)查結(jié)果整理并繪制成如下不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,請結(jié)合圖中所給信息解答下列問題:

1)這次統(tǒng)計(jì)共抽查了_________名學(xué)生,請補(bǔ)全條形統(tǒng)計(jì)圖;

2)該校共有600名學(xué)生,根據(jù)以上信息,請你估計(jì)全校學(xué)生中想?yún)⒓?/span>類活動的人數(shù);

3)若甲、乙兩名同學(xué),各自從三個項(xiàng)目中隨機(jī)選一個參加,請用列表或畫樹狀圖的方法求他們選中同一項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

治理?xiàng)钚跻灰荒x哪一項(xiàng)?(單選)

A.減少楊樹新增面積,控制楊樹每年的栽種量

B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹

C.選育無絮楊品種,并推廣種植

D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮

E.其他

根據(jù)以上統(tǒng)計(jì)圖,解答下列問題:

(1)本次接受調(diào)查的市民共有  人;

(2)扇形統(tǒng)計(jì)圖中,扇形E的圓心角度數(shù)是   ;

(3)請補(bǔ)全條形統(tǒng)計(jì)圖;

(4)若該市約有90萬人,請估計(jì)贊同選育無絮楊品種,并推廣種植的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計(jì)劃選購甲、乙兩種圖書作為校園讀書節(jié)的獎品.已知甲圖書的單價是乙圖書單價的1.5倍;用600元單獨(dú)購買甲種圖書比單獨(dú)購買乙種圖書要少10本.

1)甲、乙兩種圖書的單價分別為多少元?

2)若學(xué)校計(jì)劃購買這兩種圖書總的經(jīng)費(fèi)不超過1100元,要求購買的乙種圖書是甲種圖書的2倍,則甲種圖書至多能購買多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,為矩形的邊上一點(diǎn),動點(diǎn)同時從點(diǎn)出發(fā),點(diǎn)沿折線運(yùn)動到點(diǎn)時停止,點(diǎn)沿運(yùn)動到點(diǎn)時停止,它們運(yùn)動的速度都是秒.設(shè)同時出發(fā)秒時,的面積為,已知的函數(shù)關(guān)系圖象如圖2所示.請回答:

1)線段的長為_______cm;

2)當(dāng)運(yùn)動時間秒時,之間的距離是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次函數(shù)y=ax2-(2a+2)x+b(a≠0)在x=0和x=6時函數(shù)值相等.

(1)求a的值;

(2)若該二次函數(shù)的圖象與直線y=-2x的一個交點(diǎn)為(2,m),求它的解析式;

(3)在(2)的條件下,直線y=-2x-4與x軸,y軸分別交于A,B,將線段AB向右平移n(n>0)個單位,同時將該二次函數(shù)在2≤x≤7的部分向左平移n個單位后得到的圖象記為G,請結(jié)合圖象直接回答,當(dāng)圖象G與平移后的線段有公共點(diǎn)時,n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù),是常數(shù),)的圖象的一部分與軸的交點(diǎn)之間,對稱軸為直線.下列結(jié)論:①;②;③;④為實(shí)數(shù));⑤當(dāng)時,.其中,正確結(jié)論的個數(shù)是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富校園文化生活,提高學(xué)生的綜合素質(zhì),促進(jìn)中學(xué)生全面發(fā)展,學(xué)校開展了多種社團(tuán)活動.小明喜歡的社團(tuán)有:合唱社團(tuán)、足球社團(tuán)、書法社團(tuán)、科技社團(tuán)(分別用字母AB,C,D依次表示這四個社團(tuán)),并把這四個字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.

1)小明從中隨機(jī)抽取一張卡片是足球社團(tuán)B的概率是   

2)小明先從中隨機(jī)抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機(jī)抽取一張卡片,記錄下卡片上的字母.請你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團(tuán)D的概率.

查看答案和解析>>

同步練習(xí)冊答案