已知:如圖,點P是等邊三角形ABC內(nèi)一點,數(shù)學公式,求∠BPC的度數(shù).

解:以BP為邊作等邊三角形BPD,連接AD,
則BD=BP=DP=,∠DBP=∠BDP=60°,
∵△ABC是等邊三角形,
∴AB=BC,∠ABC=60°,
∵∠ABD+∠ABP=∠CBP+∠ABP=60°,
∴∠ABD=∠CBP,
在△ABD與△CBP中,,
∴△ABD≌△CBP(SAS),
∴∠BPC=∠BDA,AD=PC=1,
在△ADP中,∵PA=2,PD=,AD=1,
∴AP2=DP2+AD2,
∴△APD是直角三角形,
∴∠ADP=90°,
∴∠ADB=∠ADP+∠BDP=150°,
∴∠BPC=150°.
分析:以BP邊作等邊三角形BPD,連接AD,根據(jù)等邊三角形的每一個角都等于60°推出∠ABD=∠CBP,然后利用邊角邊證明△ABD與△CBP全等,根據(jù)全等三角形對應邊相等可得AD=CP=1,對應角相等可得∠BPC=∠BDA,再利用勾股定理逆定理證明△ADP是∠ADP=90°的直角三角形,從而求出∠ADB的度數(shù),即∠BPC的度數(shù).
點評:本題考查了等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,勾股定理逆定理,作出輔助線,把PA、PB、PC的長度轉(zhuǎn)化為一個三角形三條邊,構(gòu)造出直角三角形是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,點C是線段AB上的任意一點(點C與A、B點不重合),分別以AC、BC為邊在直線AB的同側(cè)作等邊△ACD和等邊△BCE,AE與CD相交于點M,BD和CE相交于點N.
(1)求證:△ACE≌△DCB;
(2)如果AB的長為10cm,MN=ycm,AC=xcm.
①請寫出y與x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
②當點C在何處時MN的長度最長?并求MN的最大長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點P是等邊三角形ABC內(nèi)一點,PA=2,PB=
3
,PC=1
,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、已知:如圖,點P是等邊△ABC內(nèi)一點,∠APB=112°,如果把△APB繞點A旋轉(zhuǎn),使點B與點C重合,此時點P落在點P'處,求∠PP'C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,點P是等邊△ABC內(nèi)一點,∠APB=112°,如果把△APB繞點A旋轉(zhuǎn),使點B與點C重合,此時點P落在點P'處,求∠PP'C的度數(shù).

查看答案和解析>>

同步練習冊答案