【題目】如圖,四邊形ABCD是邊長為1的正方形,其中,,的圓心依次是點(diǎn)A,B,C.
(1)求點(diǎn)D沿三條圓弧運(yùn)動到點(diǎn)G所經(jīng)過的路線長;
(2)判斷直線GB與DF的位置關(guān)系,并說明理由.
【答案】(1)3π(2)BG⊥DF
【解析】試題分析:(1)、扇形ADE的半徑AD=1,扇形BEF的半徑BE=BA+AE=BA+AD=2,扇形CFG的半徑CF=BC+BF=3,然后根據(jù)弧長的計(jì)算公式得出答案;(2)、首先得出△FCD和△GCB全等,然后根據(jù)全等的性質(zhì)得出答案.
試題解析:(1)、.
(2)、∵CD=CB,CF=CG,∠FCD=∠GCB=90°, ∴△FCD≌△GCB, ∴∠BGC=∠CFD,
延長GB交FD于點(diǎn)H,∵∠GBC=∠FBH, ∠GBC+∠BGC=90°,∴∠FBH+∠CFD=90°,
∴∠BHF=90°,即BG⊥DF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線分別與x軸、y軸交于A、B兩點(diǎn),與直線交于點(diǎn).平行于y軸的直線l從原點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度沿x軸向右平移,到C點(diǎn)時(shí)停止;直線l分別交線段BC、OC、x軸于點(diǎn)D、E、P,以DE為斜邊向左側(cè)作等腰直角,設(shè)直線l的運(yùn)動時(shí)間為t(秒).
(1)填空:k=____;b=____;
(2)當(dāng)t為何值時(shí),點(diǎn)F在y軸上(如圖2所示);
(3)設(shè)與重疊部分的面積為S,請直接寫出S與t的函數(shù)關(guān)系式(不要求寫解答過程),并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①在直角三角形ABC中,已知兩邊長為3和4,則第三邊長為5;
②三角形的三邊a、b、c滿足a2+c2=b2,則∠C=90°;
③△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC是直角三角形;
④△ABC中,若 a:b:c=1:2:,則這個(gè)三角形是直角三角形.
其中,正確命題的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=x+b交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)直線l垂直平分OB交AB于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是直線l上一動點(diǎn),且在點(diǎn)D的上方,設(shè)點(diǎn)P的縱坐標(biāo)為n.
①用含n的代數(shù)式表示△ABP的面積;
②當(dāng)S△ABP=8時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)中②的條件下,以PB為斜邊作等腰直角△PBC,求點(diǎn)C的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.
(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)80°后得到△A′B′C′(點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對應(yīng)點(diǎn)是點(diǎn)C′,連接BB′,若∠B′BC=20°,則∠BB′C′的大小是( )
A. 82° B. 80° C. 78° D. 76°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市有一塊長為(3a+b)米、寬為(2a+b)米的長方形地塊,中間是邊長為(a+b)米的正方形,規(guī)劃部門計(jì)劃將在中間的正方形修建一座雕像,四周的陰影部分進(jìn)行綠化.
(1)綠化的面積是多少平方米?(用含字母a、b的式子表示)
(2)求出當(dāng)a=10,b=12時(shí)的綠化面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在完成第10章的學(xué)習(xí)后,遇到了一些問題,請你幫助他.
(1)圖1中,當(dāng),試說明.
(2)圖2中,若,則嗎?請說明理由.
(3)圖3中,,若,,,,則______(直接寫出結(jié)果,用含x,y,z的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)、二次函數(shù)y=ax2+bx和反比例函數(shù)y=(k≠0)在同一直角坐標(biāo)系中的圖象如圖所示,A點(diǎn)的坐標(biāo)為(-2,0),則下列結(jié)論中,正確的是( 。
A.b=2a+k B.a(chǎn)=b+k C.a(chǎn)>b>0 D.a(chǎn)>k>0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com