【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A,B的坐標(biāo)分別為(4,0),(4,3),動(dòng)點(diǎn)M,N分別從O,B同時(shí)出發(fā).以每秒1個(gè)單位的速度運(yùn)動(dòng).其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)M作MPOA,交AC于P,連接NP,已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.

(1)P點(diǎn)的坐標(biāo)為多少(用含x的代數(shù)式表示);

(2)試求NPC面積S的表達(dá)式,并求出面積S的最大值及相應(yīng)的x值;

(3)當(dāng)x為何值時(shí),NPC是一個(gè)等腰三角形?簡(jiǎn)要說(shuō)明理由.

【答案】(1)P點(diǎn)坐標(biāo)為(x,3x).

(2)S的最大值為,此時(shí)x=2.

(3)x=,或x=,或x=

【解析】

試題分析:(1)求P點(diǎn)的坐標(biāo),也就是求OM和PM的長(zhǎng),已知了OM的長(zhǎng)為x,關(guān)鍵是求出PM的長(zhǎng),方法不唯一,可通過(guò)PMOC得出的對(duì)應(yīng)成比例線(xiàn)段來(lái)求;

也可延長(zhǎng)MP交BC于Q,先在直角三角形CPQ中根據(jù)CQ的長(zhǎng)和ACB的正切值求出PQ的長(zhǎng),然后根據(jù)PM=ABPQ來(lái)求出PM的長(zhǎng).得出OM和PM的長(zhǎng),即可求出P點(diǎn)的坐標(biāo).

(2)可按(1)中的方法經(jīng)求出PQ的長(zhǎng),而CN的長(zhǎng)可根據(jù)CN=BCBN來(lái)求得,因此根據(jù)三角形的面積計(jì)算公式即可得出S,x的函數(shù)關(guān)系式.

(3)本題要分類(lèi)討論:

當(dāng)CP=CN時(shí),可在直角三角形CPQ中,用CQ的長(zhǎng)即x和ABC的余弦值求出CP的表達(dá)式,然后聯(lián)立CN的表達(dá)式即可求出x的值;

當(dāng)CP=PN時(shí),那么CQ=QN,先在直角三角形CPQ中求出CQ的長(zhǎng),然后根據(jù)QN=CNCQ求出QN的表達(dá)式,根據(jù)題設(shè)的等量條件即可得出x的值.

當(dāng)CN=PN時(shí),先求出QP和QN的長(zhǎng),然后在直角三角形PNQ中,用勾股定理求出PN的長(zhǎng),聯(lián)立CN的表達(dá)式即可求出x的值.

試題解析:(1)過(guò)點(diǎn)P作PQBC于點(diǎn)Q,

有題意可得:PQAB,

∴△CQP∽△CBA,

解得:QP=x,

PM=3x,

由題意可知,C(0,3),M(x,0),N(4x,3),

P點(diǎn)坐標(biāo)為(x,3x).

(2)設(shè)NPC的面積為S,在NPC中,NC=4x,

NC邊上的高為,其中,0x4.

S=(4x)×x=x2+4x)

=(x2)2+

S的最大值為,此時(shí)x=2.

(3)延長(zhǎng)MP交CB于Q,則有PQBC.

若NP=CP,

PQBC,

NQ=CQ=x.

3x=4,

x=

若CP=CN,則CN=4x,PQ=x,CP=x,4x=x,

x=;

若CN=NP,則CN=4x.

PQ=x,NQ=42x,

在RtPNQ中,PN2=NQ2+PQ2,

(4x)2=(42x)2+(x)2,

x=

綜上所述,x=,或x=,或x=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分)如圖,在RtABC中,ACB=90°,D為AB的中點(diǎn),且AECD,CEAB.

(1)四邊形ADCE是菱形;

(2)若B=60°,BC=6,求菱形ADCE的高.(計(jì)算結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC∠ACB90°,M是邊AB的中點(diǎn),CH⊥AB于點(diǎn)HCD平分∠ACB.

(1)求證:∠1∠2.

(2)過(guò)點(diǎn)MAB的垂線(xiàn)交CD的延長(zhǎng)線(xiàn)于點(diǎn)E,連結(jié)AE,BE.求證:CMEM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上對(duì)應(yīng)的點(diǎn)如圖所示,則下列式子中正確的是(
A.a>b
B.|a﹣c|=a﹣c
C.﹣a<﹣b<c
D.|b+c|=b+c

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】單項(xiàng)式﹣xy2的系數(shù)是(
A.1
B.﹣1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】體育老師對(duì)甲、乙兩名同學(xué)分別進(jìn)行了8次跳高測(cè)試,經(jīng)計(jì)算這兩名同學(xué)成績(jī)的平均數(shù)相同,甲同學(xué)的方差是S2=6.4,乙同學(xué)的方差是S2=8.2,那么這兩名同學(xué)跳高成績(jī)比較穩(wěn)定的是同學(xué).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)命題:

若一個(gè)角的兩邊和另一個(gè)角的兩邊分別互相垂直,則這兩個(gè)角互補(bǔ);

邊數(shù)相等的兩個(gè)正多邊形一定相似;

等腰三角形ABC中,D是底邊BC上一點(diǎn),E是一腰AC上的一點(diǎn),若BAD=60°且AD=AE,則EDC=30°;

任意三角形的外接圓的圓心一定是三角形三條邊的垂直平分線(xiàn)的交點(diǎn).

其中正確命題的序號(hào)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A在四邊形BCDE的外部時(shí),記∠AEB為∠1,∠ADC為∠2,則∠A、∠1與∠2的數(shù)量關(guān)系,結(jié)論正確的是( )

A. ∠1=∠2+∠A B. ∠1=2∠A+∠2

C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA=5,AB=4,點(diǎn)D為邊AB上一點(diǎn),將BCD沿直線(xiàn)CD折疊,使點(diǎn)B恰好落在邊OA上的點(diǎn)E處,分別以O(shè)C,OA所在的直線(xiàn)為x軸,y軸建立平面直角坐標(biāo)系.

(1)求OE的長(zhǎng)及經(jīng)過(guò)O,D,C三點(diǎn)拋物線(xiàn)的解析式;

(2)一動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從E點(diǎn)出發(fā),沿EC以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),DP=DQ;

(3)若點(diǎn)N在(1)中拋物線(xiàn)的對(duì)稱(chēng)軸上,點(diǎn)M在拋物線(xiàn)上,是否存在這樣的點(diǎn)M與點(diǎn)N,使M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案