【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A,B的坐標(biāo)分別為(4,0),(4,3),動(dòng)點(diǎn)M,N分別從O,B同時(shí)出發(fā).以每秒1個(gè)單位的速度運(yùn)動(dòng).其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)M作MP⊥OA,交AC于P,連接NP,已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.
(1)P點(diǎn)的坐標(biāo)為多少(用含x的代數(shù)式表示);
(2)試求△NPC面積S的表達(dá)式,并求出面積S的最大值及相應(yīng)的x值;
(3)當(dāng)x為何值時(shí),△NPC是一個(gè)等腰三角形?簡(jiǎn)要說(shuō)明理由.
【答案】(1)P點(diǎn)坐標(biāo)為(x,3﹣x).
(2)S的最大值為,此時(shí)x=2.
(3)x=,或x=,或x=.
【解析】
試題分析:(1)求P點(diǎn)的坐標(biāo),也就是求OM和PM的長(zhǎng),已知了OM的長(zhǎng)為x,關(guān)鍵是求出PM的長(zhǎng),方法不唯一,①可通過(guò)PM∥OC得出的對(duì)應(yīng)成比例線(xiàn)段來(lái)求;
②也可延長(zhǎng)MP交BC于Q,先在直角三角形CPQ中根據(jù)CQ的長(zhǎng)和∠ACB的正切值求出PQ的長(zhǎng),然后根據(jù)PM=AB﹣PQ來(lái)求出PM的長(zhǎng).得出OM和PM的長(zhǎng),即可求出P點(diǎn)的坐標(biāo).
(2)可按(1)②中的方法經(jīng)求出PQ的長(zhǎng),而CN的長(zhǎng)可根據(jù)CN=BC﹣BN來(lái)求得,因此根據(jù)三角形的面積計(jì)算公式即可得出S,x的函數(shù)關(guān)系式.
(3)本題要分類(lèi)討論:
①當(dāng)CP=CN時(shí),可在直角三角形CPQ中,用CQ的長(zhǎng)即x和∠ABC的余弦值求出CP的表達(dá)式,然后聯(lián)立CN的表達(dá)式即可求出x的值;
②當(dāng)CP=PN時(shí),那么CQ=QN,先在直角三角形CPQ中求出CQ的長(zhǎng),然后根據(jù)QN=CN﹣CQ求出QN的表達(dá)式,根據(jù)題設(shè)的等量條件即可得出x的值.
③當(dāng)CN=PN時(shí),先求出QP和QN的長(zhǎng),然后在直角三角形PNQ中,用勾股定理求出PN的長(zhǎng),聯(lián)立CN的表達(dá)式即可求出x的值.
試題解析:(1)過(guò)點(diǎn)P作PQ⊥BC于點(diǎn)Q,
有題意可得:PQ∥AB,
∴△CQP∽△CBA,
∴
∴
解得:QP=x,
∴PM=3﹣x,
由題意可知,C(0,3),M(x,0),N(4﹣x,3),
P點(diǎn)坐標(biāo)為(x,3﹣x).
(2)設(shè)△NPC的面積為S,在△NPC中,NC=4﹣x,
NC邊上的高為,其中,0≤x≤4.
∴S=(4﹣x)×x=(﹣x2+4x)
=﹣(x﹣2)2+.
∴S的最大值為,此時(shí)x=2.
(3)延長(zhǎng)MP交CB于Q,則有PQ⊥BC.
①若NP=CP,
∵PQ⊥BC,
∴NQ=CQ=x.
∴3x=4,
∴x=.
②若CP=CN,則CN=4﹣x,PQ=x,CP=x,4﹣x=x,
∴x=;
③若CN=NP,則CN=4﹣x.
∵PQ=x,NQ=4﹣2x,
∵在Rt△PNQ中,PN2=NQ2+PQ2,
∴(4﹣x)2=(4﹣2x)2+(x)2,
∴x=.
綜上所述,x=,或x=,或x=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),且AE∥CD,CE∥AB.
(1)四邊形ADCE是菱形;
(2)若∠B=60°,BC=6,求菱形ADCE的高.(計(jì)算結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,M是邊AB的中點(diǎn),CH⊥AB于點(diǎn)H,CD平分∠ACB.
(1)求證:∠1=∠2.
(2)過(guò)點(diǎn)M作AB的垂線(xiàn)交CD的延長(zhǎng)線(xiàn)于點(diǎn)E,連結(jié)AE,BE.求證:CM=EM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上對(duì)應(yīng)的點(diǎn)如圖所示,則下列式子中正確的是( )
A.a>b
B.|a﹣c|=a﹣c
C.﹣a<﹣b<c
D.|b+c|=b+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育老師對(duì)甲、乙兩名同學(xué)分別進(jìn)行了8次跳高測(cè)試,經(jīng)計(jì)算這兩名同學(xué)成績(jī)的平均數(shù)相同,甲同學(xué)的方差是S甲2=6.4,乙同學(xué)的方差是S乙2=8.2,那么這兩名同學(xué)跳高成績(jī)比較穩(wěn)定的是同學(xué).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題:
①若一個(gè)角的兩邊和另一個(gè)角的兩邊分別互相垂直,則這兩個(gè)角互補(bǔ);
②邊數(shù)相等的兩個(gè)正多邊形一定相似;
③等腰三角形ABC中,D是底邊BC上一點(diǎn),E是一腰AC上的一點(diǎn),若∠BAD=60°且AD=AE,則∠EDC=30°;
④任意三角形的外接圓的圓心一定是三角形三條邊的垂直平分線(xiàn)的交點(diǎn).
其中正確命題的序號(hào)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A在四邊形BCDE的外部時(shí),記∠AEB為∠1,∠ADC為∠2,則∠A、∠1與∠2的數(shù)量關(guān)系,結(jié)論正確的是( )
A. ∠1=∠2+∠A B. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,OA=5,AB=4,點(diǎn)D為邊AB上一點(diǎn),將△BCD沿直線(xiàn)CD折疊,使點(diǎn)B恰好落在邊OA上的點(diǎn)E處,分別以O(shè)C,OA所在的直線(xiàn)為x軸,y軸建立平面直角坐標(biāo)系.
(1)求OE的長(zhǎng)及經(jīng)過(guò)O,D,C三點(diǎn)拋物線(xiàn)的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從E點(diǎn)出發(fā),沿EC以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),DP=DQ;
(3)若點(diǎn)N在(1)中拋物線(xiàn)的對(duì)稱(chēng)軸上,點(diǎn)M在拋物線(xiàn)上,是否存在這樣的點(diǎn)M與點(diǎn)N,使M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com