建立平面直角坐標(biāo)系(如圖所示),OA=OB,點P自點A出發(fā)沿線段AB勻速運動至點B停止,同時點D自原點出發(fā)沿x軸正方向勻速運動,在點P、D運動的過程中,始終滿足PO=PD,過點O、D向AB作垂線,垂足分別為點C、E,設(shè)OD的長為x
(1)求AP的長(用含x的代數(shù)式表示)
(2)在點P、D運動的過程中,線段PC與BE是否相等?若相等,請給予證明;若不相等,請說明理由;
(3)設(shè)以點P、O、D、E為頂點的四邊形面積為y,請直接寫出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

解:(1)作PG⊥x軸于點G,PF⊥y軸于點F,
在Rt△APF中,
∵OA=OB,
∴∠PAF=45°,
∴PF=AP•sin45°=AP,
∵OG=PF,即=AP,
∴AP=x (2分);

(2)結(jié)論:PC=BE.
①當(dāng)0≤x<10時,
∵PC=AC-AP=5-x,BE=BD=(10-x)=,
∴PC=BE,

②當(dāng)10≤x≤20時,如上圖
∵PC=AP-AC=,BE=BD=(x-10)=,
∴PC=BE,
綜合①②PC=BE;

(3)①當(dāng)0<x<10時,
S四邊形PODE=S△AOB-S△AOP-S△DEB,
=
=-x2+x+25,
②當(dāng)10≤x≤20時,
S四邊形PODE=S△POD+S△DOE
=x(10-)+x•
=x.
分析:(1)首先作輔助線PG⊥x軸于點G,PF⊥y軸于點F.因為在Rt△APF中PF=AP•sin45°,在等腰三角形POD中,OG=.那么通過矩形FPGO的兩對邊FP=OG建立AP與OD間的聯(lián)系.列出AP關(guān)于x的關(guān)系式.
(2)分0≤x<10,10≤x≤20兩種情況,根據(jù)圖形求得PC、BE用x表示的表達(dá)式,驗證相同.
(3)分0≤x<10,10≤x≤20兩種情況,結(jié)合圖形求得四邊形PODE面積用x表示表達(dá)式.
點評:本題是二次函數(shù)的綜合題型,其中涉及到求幾何圖形面積通過幾個三角形的面積求得.在求有關(guān)動點問題時要注意分析題意分情況討論結(jié)果.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在坡面為OA的斜坡上,有兩根電線桿OC,AD,如圖,以地平面為x軸,OC所在直線為精英家教網(wǎng)y軸,建立平面直角坐標(biāo)系,已知OA=41米,AB=9米,OC=AD=10米,坡面中點F處與電線的距離EF=7.5米
(1)求電線所在的拋物線解析式;
(2)若平行于y軸的任意直線x=k交拋物線于點M,交坡面OA于點N,求MN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在14×18的網(wǎng)格中建立平面直角坐標(biāo)系,△ABC的頂點在格點上,點A的坐標(biāo)為(1,1).精英家教網(wǎng)
(1)把△ABC繞點A按逆時針方向旋轉(zhuǎn)90°后得到△AB1C1,請畫出△AB1C1的圖形,并寫出C1的坐標(biāo);
(2)把△ABC以點O為位似中心放大,使放大前后對應(yīng)邊的比為1﹕2,在第一象限內(nèi)畫出放大后的△A2B2C2的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC就是格點三角形.在建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(1,1).
(1)將△ABC沿y軸向下平移5個單位,得到△A1B1C1,畫出△A1B1C1
(2)以點C為位似中心,將△ABC放大到2倍.得到△A2B2C,畫出△A2B2C.
(3)寫出下面三個點的坐標(biāo):點A1
(-1,-4)
、點C1
(4,-3)
、點B2
(0,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如右圖所示的方格圖中,我們稱每個小正方形的頂點為“格點”(小正方形的邊長設(shè)為1個長度單位),以格點為頂點的三角形叫做“格點三角形”.根據(jù)圖形,解決下面的問題:
(1)把格點△ABC向右平移6個長度單位,得△A′B′C′,請畫出該三角形;
(2)以a、b交點O為對稱中心,畫出△A′B′C′關(guān)于點O的中心對稱圖形△A″B″C″;
(3)如果以直線a、b為坐標(biāo)軸建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(-3,4)精英家教網(wǎng),請寫出△A″B″C″各頂點的坐標(biāo),并求出△A″B″C″的周長(結(jié)果用根號表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,每個小方格都是邊長為1個單位的正方形.Rt△ABC 的頂點在格 點上,建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(-4,0),點B的坐標(biāo)為(-1,0).已知Rt△ABC和Rt△A1B1C1關(guān)于y軸對稱,Rt△A1B1C1和Rt△A2B2C2關(guān)于直線y=-2軸對稱.
(1)試畫出Rt△A1B1C1和Rt△A2B2C2,并寫出A1,B1,C1,A2,B2,C2的坐標(biāo);
(2)請判斷Rt△A1B1C1和Rt△A2B2C2是否關(guān)于某點M中心對稱?若是,請寫出M點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案