【題目】如圖,△ABC是⊙O的內(nèi)接三角形,點D在上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.
(1)求證:AC=CE;
(2)求證:BC2﹣AC2=ABAC;
(3)已知⊙O的半徑為3.
①若=,求BC的長;
②當為何值時,ABAC的值最大?
【答案】(1)證明見解析;(2)證明見解析;(3)①BC=4;②
【解析】(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;
(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BFBG=BEAB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;
(3)①設(shè)AB=5k、AC=3k,由BC2-AC2=ABAC知BC=2k,連接ED交BC于點M,Rt△DMC中由DC=AC=3k、MC=BC=k求得DM==k,可知OM=OD-DM=3-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設(shè)OM=d,則MD=3-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得ABAC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.
(1)∵四邊形EBDC為菱形,
∴∠D=∠BEC,
∵四邊形ABDC是圓的內(nèi)接四邊形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
∴AC=CE;
(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四邊形AEFG是⊙C的內(nèi)接四邊形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴,即BFBG=BEAB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
∴(BC﹣AC)(BC+AC)=ABAC,即BC2﹣AC2=ABAC;
(3)設(shè)AB=5k、AC=3k,
∵BC2﹣AC2=ABAC,
∴BC=2k,
連接ED交BC于點M,
∵四邊形BDCE是菱形,
∴DE垂直平分BC,
則點E、O、M、D共線,
在Rt△DMC中,DC=AC=3k,MC=BC=k,
∴DM=,
∴OM=OD﹣DM=3﹣k,
在Rt△COM中,由OM2+MC2=OC2得(3﹣k)2+(k)2=32,
解得:k=或k=0(舍),
∴BC=2k=4;
②設(shè)OM=d,則MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,
∴BC2=(2MC)2=36﹣4d2,
AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,
由(2)得ABAC=BC2﹣AC2
=﹣4d2+6d+18
=﹣4(d﹣)2+,
∴當d=,即OM=時,ABAC最大,最大值為,
∴DC2=,
∴AC=DC=,
∴AB=,此時.
科目:初中數(shù)學 來源: 題型:
【題目】將兩塊全等的三角板如圖1擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖1中△A1B1C繞點C順時針旋轉(zhuǎn)45°得圖2,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖2中,若AP1=a,則CQ等于多少?
(3)將圖2中△A1B1C繞點C順時針旋轉(zhuǎn)到△A2B2C(如圖3),點P2是A2C與AP1的交點.當旋轉(zhuǎn)角為多少度時,有△AP1C∽△CP1P2?這時線段CP1與P1P2之間存在一個怎樣的數(shù)量關(guān)系?.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與軸交于點,與軸交于點,且經(jīng)過點.
(1)當時;
①求一次函數(shù)的表達式;
②平分交軸于點,求點的坐標;
(2)若△為等腰三角形,求的值;
(3)若直線也經(jīng)過點,且,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結(jié)論:①3a+b<0;②-1≤a≤-;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某區(qū)八年級學生的睡眠情況,隨機抽取了該區(qū)八年級學生部分學生進行調(diào)查.已知D組的學生有15人,利用抽樣所得的數(shù)據(jù)繪制所示的統(tǒng)計圖表.
一、學生睡眠情況分組表(單位:小時)
組別 | 睡眠時間 |
二、學生睡眠情況統(tǒng)計圖
根據(jù)圖表提供的信息,回答下列問題:
(1)試求“八年級學生睡眠情況統(tǒng)計圖”中的a的值及a對應(yīng)的扇形的圓心角度數(shù);
(2)如果睡眠時間x(時)滿足:,稱睡眠時間合格.已知該區(qū)八年級學生有3250人,試估計該區(qū)八年級學生睡眠時間合格的共有多少人?
(3)如果將各組別學生睡眠情況分組的最小值(如C組別中,取),B、C、D三組學生的平均睡眠時間作為八年級學生的睡眠時間的依據(jù).試求該區(qū)八年級學生的平均睡眠時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用一條24cm的細繩圍成一個等腰三角形。
(1)如果腰長是底邊的2倍,那么各邊的長是多少?
(2)能圍成有一邊長為4cm的等腰三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個結(jié)論,其中不正確的結(jié)論是( )
A. abc=0 B. a+b+c>0 C. 3a=b D. 4ac﹣b2<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com