【題目】計算:
(1)(-2)+(-3)+5
(2)×5÷×5
(3)12-7×(-4)+8÷(-2)
(4)-14+(2-5)2-2
(5)2÷(-2)+0÷7-(-8)×(-2)
(6)(-1)5×(-5)÷[(-3)2+2×(-5)].
【答案】(1)0;(2)25;(3)36;(4)6;(5)-17;(6)-5.
【解析】
(1)根據(jù)有理數(shù)的加減法可以解答本題;
(2)根據(jù)有理數(shù)的乘除法可以解答本題;
(3)根據(jù)有理數(shù)的加減法和乘除法可以解答本題;
(4)先算乘方,再算加減即可;
(5)先算乘方,再算加減即可;
(6)根據(jù)有理數(shù)的加減法和乘除法可以解答本題.
(1)原式=-5+5=0;
(2)原式==25;
(3)原式=12+28-4=36;
(4)原式=-1+9-2=6;
(5)原式=-1+0-16=-17;
(6)原式=-1×(-5)÷(9-10)=5÷(-1)=-5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)三視圖求幾何體的表面積.
下列各圖是棱長為的小正方體擺成的,如圖①中,共有個小正方體,從正面看有個正方形,表面積為;如圖②中,共有個小正方體,從正面看有個正方形,表面積為;如圖③,共有個小正方體,從正面看有個正方形,表面積為;…
第個圖中,共有多少個小正方體?從正面看有多少個正方形?表面積是多少?
第個圖形中,從正面看有多少個正方形?表面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F兩點,連結(jié)BE,DF.
(1)求證:△DOE≌△BOF.
(2)當∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輪船在P處測得燈塔A在正北方向,燈塔B在南偏東24.5°方向,輪船向正東航行了2400m,到達Q處,測得A位于北偏西49°方向,B位于南偏西41°方向.
(1)線段BQ與PQ是否相等?請說明理由;
(2)求A、B間的距離(參考數(shù)據(jù)cos41°=0.75).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∥,BE∥CF,BA⊥,DC⊥,下面給出四個結(jié)論:①BE=CF;②AB=DC;③;
④四邊形ABCD是矩形.其中說法正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道,表示5與-2之差的絕對值,實際上也可理解為5與-2兩數(shù)在數(shù)軸上所對應(yīng)的兩點之間的距離,試探索:
(1)求=________.
(2)若=5,則x=____.
(3)同理表示數(shù)軸上有理數(shù)x所對應(yīng)的點到-1和2所對應(yīng)的兩點距離之和,請你找出所有符合條件的整數(shù)x,使得=3,這樣的整數(shù)是________(直接寫答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)當△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點.
(1)判斷四邊形EFGH的形狀,并證明你的結(jié)論;
(2)當BD,AC滿足什么條件時,四邊形EFGH是正方形.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】諸暨某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“五一”國際勞動節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.
設(shè)每件童裝降價x元時,每天可銷售______件,每件盈利______元;用x的代數(shù)式表示
每件童裝降價多少元時,平均每天贏利1200元.
要想平均每天贏利2000元,可能嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com