【題目】已知:如圖,四邊形ABCD是平行四邊形,CE∥BD交AD的延長線于點(diǎn)E,CE=AC.
(1)求證:四邊形ABCD是矩形;
(2)若AB=4,AD=3,求四邊形BCED的周長.
【答案】(1)詳見解析;(2)16.
【解析】
(1)根據(jù)已知條件推知四邊形BCED是平行四邊形,則對(duì)邊相等:CE=BD,依據(jù)等量代換得到對(duì)角線AC=BD,則平行四邊形ABCD是矩形;
(2)通過勾股定理求得BD的長度,再利用四邊形BCED是平行四邊形列式計(jì)算即可得解.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AE∥BC.
∵CE∥BD,
∴四邊形BCED是平行四邊形.
∴CE=BD.
∵CE=AC,
∴AC=BD.
∴□ABCD是矩形.
(2)解:∵□ABCD是矩形,AB=4,AD=3,
∴∠DAB=90°,BC=AD=3,
∴.
∵四邊形BCED是平行四邊形,
∴四邊形BCED的周長為2(BC+BD)=2×(3+5)=16.
故答案為(1)詳見解析;(2)16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ABC和△ADE均為等邊三角形,點(diǎn)D在邊BC上,連接CE.請(qǐng)?zhí)羁眨?/span>
①∠ACE的度數(shù)為 ;
②線段AC、CD、CE之間的數(shù)量關(guān)系為 .
(2)拓展探究
如圖2,△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)D在邊BC上,連接CE.請(qǐng)判斷∠ACE的度數(shù)及線段AC、CD、CE之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題
如圖3,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC與BD交于點(diǎn)E,請(qǐng)直接寫出線段AC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點(diǎn)D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.
(1)求∠CAD的度數(shù);
(2)若點(diǎn)F為線段BC上的任意一點(diǎn),當(dāng)△EFC為直角三角形時(shí),求∠BEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的表達(dá)式為:y=-3x+3,且直線l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A,B,直線l1,l2交于點(diǎn)C.
(1)求點(diǎn)D的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)求△ADC的面積;
(4)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【概念學(xué)習(xí)】規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于0)的除法運(yùn)算叫除方,如, 等.類比有理數(shù)乘方,我們把記作,讀作“2的圈3次方”, 記作,讀作“的圈4次方”.一般地,把(≠0)記作,讀作“a的圈c次方”.
【初步探究】
(1)直接寫出計(jì)算結(jié)果: =______________, =______________.
(2)關(guān)于除方,下列說法錯(cuò)誤的是( )
A.任何非零數(shù)的圈3次方都等于它的倒數(shù) B.對(duì)于任何正整數(shù)c, =1
C. D.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù)
【深入思考】
我們知道有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?
==
(1)試一試:仿照上面的算式,將下列運(yùn)算結(jié)果直接寫成冪的形式.
=___________; =_____________; =____________.
(2)想一想:將一個(gè)非零有理數(shù)a的圈c(c≥3)次方寫成冪的形式等于___________.
(3)算一算:
/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=24,BC=12,點(diǎn)E沿BC邊從點(diǎn)B開始向點(diǎn)C以每秒2個(gè)單位長度的速度運(yùn)動(dòng);點(diǎn)F沿CD邊從點(diǎn)C開始向點(diǎn)D以每秒4個(gè)單位長度的速度運(yùn)動(dòng),如果E、F同時(shí)出發(fā),用t(0≤t≤6)秒表示運(yùn)動(dòng)的時(shí)間,當(dāng)t為何值時(shí),以點(diǎn)E、C、F為頂點(diǎn)的三角形與△ACD相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點(diǎn)E是AD的中點(diǎn),BE的延長線與CD的延長線交于點(diǎn)F.
(1)求證:△ABE≌△DFE;
(2)試連結(jié)BD,AF,判斷四邊形ABDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,馬戲團(tuán)讓獅子和公雞表演蹺蹺板節(jié)目.蹺蹺板支柱 AB的高度為1.2米.
(1)若吊環(huán)高度為2米,支點(diǎn) A為蹺蹺板 PQ的中點(diǎn),獅子能否將公雞送到吊環(huán)上?為什么?
(2)若吊環(huán)高度為3.6米,在不改變其他條件的前提下移動(dòng)支柱,當(dāng)支點(diǎn) A移到蹺蹺板 PQ的什么位置時(shí),獅子剛好能將公雞送到吊環(huán)上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一座拋物線型拱橋,已知橋下在正常水位AB時(shí),水面寬8m,水位上升3m, 就達(dá)到警戒水位CD,這時(shí)水面寬4m,若洪水到來時(shí),水位以每小時(shí)0.2m的速度上升,求水過警戒水位后幾小時(shí)淹到橋拱頂.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com