【題目】如圖,已知∠ABC=90°,△ABE是等邊三角形,點(diǎn)P為射線(xiàn)BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),連接AP,將線(xiàn)段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段AQ,連接QE并延長(zhǎng)交射線(xiàn)BC于點(diǎn)F.

(1)如圖,當(dāng)BP=BA時(shí),∠EBF=______°,猜想∠QFC =______°;

(2)如圖,當(dāng)點(diǎn)P為射線(xiàn)BC上任意一點(diǎn)時(shí),猜想∠QFC的度數(shù),并加以證明.

(3)已知線(xiàn)段AB=,設(shè)BP=x,點(diǎn)Q到射線(xiàn)BC的距離為y,求y關(guān)于x的函數(shù)關(guān)系式.

【答案】(1)∠EBF=30°; ∠QFC=60°;(2)∠QFC=60°.(3)(x>0)

【解析】試題分析:(1)EBF與∠ABE互余,而∠ABE=60°,即可求得∠EBF的度數(shù);利用觀(guān)察法,或量角器測(cè)量的方法即可求得∠QFC的度數(shù);

(2)根據(jù)三角形的外角等于不相鄰的兩內(nèi)角的和,證明∠BAP=EAQ,進(jìn)而得到ABP≌△AEQ,證得∠AEQ=ABP=90°,則∠BEF=180°-AEQ-AEB=180°-90°-60°=30°,QFC=EBF+BEF;

(3)過(guò)點(diǎn)FFGBE于點(diǎn)G,過(guò)點(diǎn)QQHBC,根據(jù)ABP≌△AEQ得到:設(shè)QE=BP=x,QF=QE+EF=x+2.點(diǎn)Q到射線(xiàn)BC的距離y=QH=sin60°×QF=(x+2),即可求得函數(shù)關(guān)系式.

試題解析:(1)∵∠ABC=90°,BAE=60°,

∴∠EBF=30°;

則猜想:∠QFC=60°;

(2)QFC=60°.

∵∠BAP=BAE+EAP=60°+EAP,EAQ=QAP+EAP=60°+EAP,

∴∠BAP=EAQ

ABPAEQ中,

,

∴△ABP≌△AEQ (SAS) 

∴∠AEQ=ABP=90°

∴∠BEF=180°-AEQ-AEB=180°-90°-60°=30°,

∴∠QFC=EBF+BEF=30°+30°=60°;

(3)在圖1中,過(guò)點(diǎn)FFGBE于點(diǎn)G,過(guò)點(diǎn)QQHBC于點(diǎn)H,

∵△ABE是等邊三角形,

BE=AB=,

由(1)得∠EBF=30°,在RtBGF中,

FG=2,BF=4,EF=BF=4,

∵△ABP≌△AEQ,QE=PB=x,QF=QE+EF=x+4,

由(2)得∠QFC=60°,∴在RtQHF中,∠FQH=30°

y關(guān)于x的函數(shù)關(guān)系式是:(x>0)

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(x+a)(x2-x+c)的積中不含x2項(xiàng)和x項(xiàng),求a,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線(xiàn)y1ax2bxc(a≠0)圖象的一部分,拋物線(xiàn)的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線(xiàn)y2mxn(m≠0)與拋物線(xiàn)交于A,B兩點(diǎn),下列結(jié)論:

①2ab=0;

abc>0;

③方程ax2bxc=3有兩個(gè)相等的實(shí)數(shù)根;

④拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)是(-1,0);

⑤當(dāng)1<x<4時(shí),有y2<y1,

其中正確的是(   ).

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一直角三角形的木版,三邊的平方和為1800cm2,則斜邊長(zhǎng)為(  )

A. 80cm B. 30cm C. 90cm D. 120cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,梯形AOBC的邊OBx軸的正半軸上,ACOB,BCOB,過(guò)點(diǎn)A的雙曲線(xiàn)的一支在第一象限交梯形對(duì)角線(xiàn)OC于點(diǎn)D,交邊BC于點(diǎn)E.1)填空:雙曲線(xiàn)的另一支在第_____象限,k的取值范圍是_____;

2)若點(diǎn)C的坐標(biāo)為(22),當(dāng)點(diǎn)E在什么位置時(shí)?陰影部分面積S最?

3)若 =2,求雙曲線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.

甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.

乙公司方案:綠化面積不超過(guò)1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過(guò)1000平方米時(shí),每月在收取5500元的基礎(chǔ)上,超過(guò)部分每平方米收取4.

(1)求如圖所示的yx的函數(shù)解析式;(不要求寫(xiě)取值范圍)

(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過(guò)計(jì)算說(shuō)明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正比例函數(shù)的圖像過(guò)點(diǎn)A(3,-6),則該正比例函數(shù)的表達(dá)式為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是

A. a2 +a3= a5 B. a4÷a=a4 C. a2.a3=a6 D. (a2)3=- a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校240名學(xué)生參加植樹(shù)活動(dòng),要求每人植樹(shù)47棵,活動(dòng)結(jié)束后抽查了20名學(xué)生每人的植樹(shù)量,并分為四類(lèi):A類(lèi)4棵、B類(lèi)5棵、C類(lèi)6棵、D類(lèi)7棵,將各類(lèi)的人數(shù)繪制成如圖所示不完整的條形統(tǒng)計(jì)圖,回答下列問(wèn)題:

1)補(bǔ)全條形圖;

2)寫(xiě)出這20名學(xué)生每人植樹(shù)量的眾數(shù)和中位數(shù);

3)估計(jì)這240名學(xué)生共植樹(shù)多少棵?

查看答案和解析>>

同步練習(xí)冊(cè)答案