(2010•安徽)如圖,AD是△ABC的邊BC上的高,由下列條件中的某一個就能推出△ABC是等腰三角形的是    .(把所有正確答案的序號都填寫在橫線上)
①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.
【答案】分析:可根據(jù)等腰三角形三線合一的性質來判斷①②是否正確;③④要通過作等腰三角形來判斷其結論是否成立.
解答:解:應添加的條件是②③④;
證明:②當∠BAD=∠CAD時,
∵AD是∠BAC的平分線,且AD是BC邊上的高;
則△ABD≌△ACD,
∴△BAC是等腰三角形;
③延長DB至E,使BE=AB;延長DC至F,使CF=AC;連接AE、AF;

∵AB+BD=CD+AC,
∴DE=DF,又AD⊥BC;
∴△AEF是等腰三角形;
∴∠E=∠F;
∵AB=BE,
∴∠ABC=2∠E;
同理,得∠ACB=2∠F;
∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;

④△ABC中,AD⊥BC,根據(jù)勾股定理,得:
AB2-BD2=AC2-CD2,
即(AB+BD)(AB-BD)=(AC+CD)(AC-CD);
∵AB-BD=AC-CD,
∴AB+BD=AC+CD;
∴兩式相加得,
2AB=2AC;
∴AB=AC,
∴△ABC是等腰三角形
故填②③④.
點評:此題主要考查的是等腰三角形的判定和性質;本題的難點是結論③的證明,能夠正確的構建出等腰三角形是解答③題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年安徽省中考數(shù)學試卷(解析版) 題型:解答題

(2010•安徽)如圖,AD∥FE,點B、C在AD上,∠1=∠2,BF=BC.
(1)求證:四邊形BCEF是菱形;
(2)若AB=BC=CD,求證:△ACF≌△BDE.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省中考數(shù)學試卷(解析版) 題型:填空題

(2010•安徽)如圖,△ABC內接于⊙O,AC是⊙O的直徑,∠ACB=50°,點D是上一點,則∠D=    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省中考數(shù)學試卷(解析版) 題型:選擇題

(2010•安徽)如圖,⊙O過點B、C.圓心O在等腰直角△ABC的內部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為( )

A.
B.2
C.3
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省中考數(shù)學試卷(解析版) 題型:選擇題

(2010•安徽)如圖,直線l1∥l2,∠1=55°,∠2=65°,則∠3為( )

A.50°
B.55°
C.60°
D.65°

查看答案和解析>>

同步練習冊答案