• 有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,

    ∠FDE=90°,DF=4,DE=。將這副直角三角板按如圖(1)所示位置擺放,點(diǎn)B與點(diǎn)F重合,直角邊BA與FD在同一條直線上,現(xiàn)固定三角板ABC,將三角板DEF沿射線BA方向平行移動(dòng),當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)A時(shí)停止運(yùn)動(dòng)。

    (1)如圖(2),當(dāng)三角板DEF運(yùn)動(dòng)到點(diǎn)D與點(diǎn)A重合時(shí),設(shè)EF與BC交于點(diǎn)M,則∠EMC=        度;

    (2)如圖(3),在三角板DEF運(yùn)動(dòng)過(guò)程中,當(dāng)EF經(jīng)過(guò)點(diǎn)C時(shí),求FC的長(zhǎng);

    (3)在三角板DEF運(yùn)動(dòng)過(guò)程中,設(shè)BF=x,兩塊三角板重疊部分面積為y,求y與x的函數(shù)解析式,并求出對(duì)應(yīng)的x取值范圍。

     

    【答案】

    解:(1)15。

    (2)如題圖3所示,當(dāng)EF經(jīng)過(guò)點(diǎn)C時(shí),。

    (3)在三角板DEF運(yùn)動(dòng)過(guò)程中,分三段討論:

    ①當(dāng)0≤x≤2時(shí),如答圖1所示,

    設(shè)DE交BC于點(diǎn)G.過(guò)點(diǎn)M作MN⊥AB于點(diǎn)N,則△MNB為等腰直角三角形,MN=BN。

    又∵,

    ∴NF+BF=MN,即

    。

    。

    ②當(dāng)2<x≤時(shí),如答圖2所示,

    過(guò)點(diǎn)M作MN⊥AB于點(diǎn)N,則△MNB為等腰直角三角形,MN=BN。

    又∵,

    ∴NF+BF=MN,即

    。

    。

    ③當(dāng)<x≤6時(shí),如答圖3所示,

    由BF=x,則AF=AB-BF=6-x,

    設(shè)AC與EF交于點(diǎn)M,則

    。

    綜上所述,y與x的函數(shù)解析式為:

    。

    【解析】

    試題分析:(1)如題圖2所示,

    ∵在三角板DEF中,∠FDE=90°,DF=4,DE=,

    !唷螪FE=60°。

    ∴∠EMC=∠FMB=∠DFE-∠ABC=60°-45°=15°。

    (2)如題圖3所示,在Rt△ACF中,解直角三角形即可。

    (3)認(rèn)真分析三角板的運(yùn)動(dòng)過(guò)程,明確不同時(shí)段重疊圖形的變化情況,分0≤x≤2,2<x≤,<x≤6三時(shí)段討論:

    當(dāng)0≤x≤2,即開(kāi)始到DE與AC重合之前時(shí),;

    當(dāng)2<x≤,即DE與AC重合之后到EF經(jīng)過(guò)點(diǎn)C之前時(shí),;

    當(dāng)<x≤6,即EF經(jīng)過(guò)點(diǎn)C之后到停止之前時(shí),。

     

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    (2013•汕頭)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4
    3
    .將這副直角三角板按如圖1所示位置擺放,點(diǎn)B與點(diǎn)F重合,直角邊BA與FD在同一條直線上.現(xiàn)固定三角板ABC,將三角板DEF沿射線BA方向平行移動(dòng),當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)A時(shí)停止運(yùn)動(dòng).
    (1)如圖2,當(dāng)三角板DEF運(yùn)動(dòng)到點(diǎn)D到點(diǎn)A重合時(shí),設(shè)EF與BC交于點(diǎn)M,則∠EMC=
    15
    15
    度;
    (2)如圖3,當(dāng)三角板DEF運(yùn)動(dòng)過(guò)程中,當(dāng)EF經(jīng)過(guò)點(diǎn)C時(shí),求FC的長(zhǎng);
    (3)在三角板DEF運(yùn)動(dòng)過(guò)程中,設(shè)BF=x,兩塊三角板重疊部分的面積為y,求y與x的函數(shù)解析式,并求出對(duì)應(yīng)的x取值范圍.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省無(wú)錫市南長(zhǎng)區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

    有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4,將這副直角三角板按如圖(1)所示位置擺放,點(diǎn)B與點(diǎn)F重合,直角邊BAFD在同一條直線上.現(xiàn)固定三角板ABC,將三角板DEF沿射線BA方向平行移動(dòng),當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)A時(shí)停止運(yùn)動(dòng).

    (1)如圖(2),當(dāng)三角板DEF運(yùn)動(dòng)到點(diǎn)D與點(diǎn)A重合時(shí),設(shè)EFBC交于點(diǎn)M,則∠EMC= ?? 度;

    (2)如圖(3),在三角板DEF運(yùn)動(dòng)過(guò)程中,當(dāng)EF經(jīng)過(guò)點(diǎn)C時(shí),求FC的長(zhǎng);

    (3)在三角板DEF運(yùn)動(dòng)過(guò)程中,當(dāng)DBA的延長(zhǎng)線上時(shí),設(shè)BF=x,兩塊三角板重迭部分的面積為y.求yx的函數(shù)關(guān)系式,并求出對(duì)應(yīng)的x取值范圍.

     

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源:2013年廣東省汕頭市中考數(shù)學(xué)試卷(解析版) 題型:解答題

    有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.將這副直角三角板按如圖1所示位置擺放,點(diǎn)B與點(diǎn)F重合,直角邊BA與FD在同一條直線上.現(xiàn)固定三角板ABC,將三角板DEF沿射線BA方向平行移動(dòng),當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)A時(shí)停止運(yùn)動(dòng).
    (1)如圖2,當(dāng)三角板DEF運(yùn)動(dòng)到點(diǎn)D到點(diǎn)A重合時(shí),設(shè)EF與BC交于點(diǎn)M,則∠EMC=______度;
    (2)如圖3,當(dāng)三角板DEF運(yùn)動(dòng)過(guò)程中,當(dāng)EF經(jīng)過(guò)點(diǎn)C時(shí),求FC的長(zhǎng);
    (3)在三角板DEF運(yùn)動(dòng)過(guò)程中,設(shè)BF=x,兩塊三角板重疊部分的面積為y,求y與x的函數(shù)解析式,并求出對(duì)應(yīng)的x取值范圍.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源:2013年廣東省中考數(shù)學(xué)試卷(解析版) 題型:解答題

    有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.將這副直角三角板按如圖1所示位置擺放,點(diǎn)B與點(diǎn)F重合,直角邊BA與FD在同一條直線上.現(xiàn)固定三角板ABC,將三角板DEF沿射線BA方向平行移動(dòng),當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)A時(shí)停止運(yùn)動(dòng).
    (1)如圖2,當(dāng)三角板DEF運(yùn)動(dòng)到點(diǎn)D到點(diǎn)A重合時(shí),設(shè)EF與BC交于點(diǎn)M,則∠EMC=______度;
    (2)如圖3,當(dāng)三角板DEF運(yùn)動(dòng)過(guò)程中,當(dāng)EF經(jīng)過(guò)點(diǎn)C時(shí),求FC的長(zhǎng);
    (3)在三角板DEF運(yùn)動(dòng)過(guò)程中,設(shè)BF=x,兩塊三角板重疊部分的面積為y,求y與x的函數(shù)解析式,并求出對(duì)應(yīng)的x取值范圍.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案