【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)都在格點(diǎn)上,且△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,C點(diǎn)坐標(biāo)為(-2,1)。

(1)請(qǐng)直接寫(xiě)出A1的坐標(biāo)   ;并畫(huà)出△A1B1C1

(2)P(a,b)是△ABC的AC邊上一點(diǎn),將△ABC平移后點(diǎn)P的對(duì)稱點(diǎn)P'(a+2,b﹣6),請(qǐng)畫(huà)出平移后的△A2B2C2

(3)若△A1B1C1和△A2B2C2關(guān)于某一點(diǎn)成中心對(duì)稱,則對(duì)稱中心的坐標(biāo)為   

【答案】(1)作圖見(jiàn)解析,A1(3,﹣4);

(2)作圖見(jiàn)解析;

(3)作圖見(jiàn)解析,中心對(duì)稱點(diǎn)O′的坐標(biāo)為:(1,﹣3).

【解析】試題分析:(1)直接利用關(guān)于原點(diǎn)對(duì)稱點(diǎn)的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;(2)直接利用平移規(guī)律得出ABC平移后的位置;(3)利用所畫(huà)三角形連接對(duì)應(yīng)點(diǎn)得出對(duì)稱中心.

試題解析:(1)如圖所示:A1B1C1即為所求,A1(3,﹣4);

(2)如圖所示:A2B2C2即為所求;

(3)如圖所示:中心對(duì)稱點(diǎn)O′的坐標(biāo)為:(1,﹣3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題10分))規(guī)定ab=2a×2b

1)求23;

2)若2∣x+1∣16,求x的值.。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)AB,CD在同一條直線上,點(diǎn)EF分別在直線AD的兩側(cè),且AE=DF,∠A=∠DAB=DC

1)求證:四邊形BFCE是平行四邊形;

2)若AD=10,DC=3,∠EBD=60°,則BE= 時(shí),四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,P是線段AB上的一點(diǎn),在AB的同側(cè)作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,連接CD,點(diǎn)E、F、G、H分別是AC、AB、BD、CD的中點(diǎn),順次連接E、F、G、H.

(1)猜想四邊形EFGH的形狀,直接回答,不必說(shuō)明理由;

(2)當(dāng)點(diǎn)P在線段AB的上方時(shí),如圖2,在△APB的外部作△APC和△BPD,其他條件不變,(1)中的結(jié)論還成立嗎?說(shuō)明理由;

(3)如果(2)中,∠APC=∠BPD=90°,其他條件不變,先補(bǔ)全圖3,再判斷四邊形EFGH的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x2﹣y2=6,x+y=3,則x﹣y=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某海域有兩個(gè)海拔均為200米的海島A和海島B,一勘測(cè)飛機(jī)在距離海平面垂直高度為1100米的空中飛行,飛行到點(diǎn)C處時(shí)測(cè)得正前方一海島頂端A的俯角是45°,然后沿平行于AB的方向水平飛行1.99×104米到達(dá)點(diǎn)D處,在D處測(cè)得正前方另一海島頂端B的俯角是60°,求兩海島間的距離AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:(a+3)(a-3)-5(a+1)= _______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c(a>0)的對(duì)稱軸為直線x=1,且經(jīng)過(guò)點(diǎn)(﹣1,y1),(﹣2,y2),試比較y1和y2的大。簓1____y2(填“>”,“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)n邊形的內(nèi)角和是720°,則n_____

查看答案和解析>>

同步練習(xí)冊(cè)答案