要使關(guān)于x的方程x2+k=0有兩個不相等的實數(shù)根,k的值可以是________.(寫出符合條件的一個值)

k=-4,答案不唯一
分析:根據(jù)一元二次方程根的判別式進行解答.
解答:∵關(guān)于x的方程x2+k=0有兩個不相等的實數(shù)根,
∴△>0,
∴02-4k>0,
∴k<0,
不防取k=-4.答案不唯一.
點評:本題考查了根的判別式,一元二次方程根的情況與判別式△的關(guān)系:
(1)△>0?方程有兩個不相等的實數(shù)根;
(2)△=0?方程有兩個相等的實數(shù)根;
(3)△<0?方程沒有實數(shù)根.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,菱形鐵片ABCD的對角線AC,DB相交于點E,sin∠DAC=
35
,AE、DE的長是方程x2-140x+k=0的兩根.
(1)求AD的長;
(2)如果M,N是AC上的兩個動點,分別以M,N為圓心作圓,使⊙M與邊從AB、AD相切,⊙N與邊BC,CD相切,且⊙M與⊙N相外切,設(shè)AM=t,⊙M與⊙N面積的和為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)某工廠要利用這種菱形鐵片(單位:mm)加工一批直徑為48mm,60mm,90mm的圓精英家教網(wǎng)形零件(菱形鐵片上只能加工同一直徑的零件,不計加工過程中的損耗),問加工哪種零件能最充分地利用這種鐵片并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、要使方程(a-3)x2+(b+1)x+c=0是關(guān)于x的一元二次方程,則( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

當k
≠1
≠1
時,關(guān)于x的方程(k+1)x2+(2k一1)x+3=0是一元二次方程;要使二次根式
x-3
有意義,字母x的取值范圍為
x≥3
x≥3

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《圓》(05)(解析版) 題型:解答題

(2001•金華)如圖,菱形鐵片ABCD的對角線AC,DB相交于點E,,AE、DE的長是方程x2-140x+k=0的兩根.
(1)求AD的長;
(2)如果M,N是AC上的兩個動點,分別以M,N為圓心作圓,使⊙M與邊從AB、AD相切,⊙N與邊BC,CD相切,且⊙M與⊙N相外切,設(shè)AM=t,⊙M與⊙N面積的和為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)某工廠要利用這種菱形鐵片(單位:mm)加工一批直徑為48mm,60mm,90mm的圓形零件(菱形鐵片上只能加工同一直徑的零件,不計加工過程中的損耗),問加工哪種零件能最充分地利用這種鐵片并說明理由.

查看答案和解析>>

同步練習冊答案