【題目】為了加強(qiáng)學(xué)生安全教育,某市某中學(xué)舉行了一次“安全知識(shí)競賽”,共有1600名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)下面的頻數(shù)分布表和頻數(shù)分布直方圖,解答下列問題:
頻數(shù)分布表
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 8 | 0.16 |
70.5~80.5 | 12 | 0.24 |
80.5~90.5 | 15 | 0.30 |
90.5~100.5 | a | b |
合計(jì) |
(1)頻數(shù)分布表中a= ,b= ;
(2)抽取的樣本容量是 ,請(qǐng)補(bǔ)全頻數(shù)分布直方圖.
(3)若成績?cè)?/span>80分以上(不含80分)為優(yōu)秀,則該校成績沒達(dá)到優(yōu)秀的約為多少人?
【答案】(1)11,0.22;(2)50,見解析;(3)該校成績沒達(dá)到優(yōu)秀的約為768人.
【解析】
(1)根據(jù)第一組的頻數(shù)與頻率列式求出被抽取的學(xué)生總?cè)藬?shù),然后減去其它各組的人數(shù)即可得到a的值,用a的值除以總?cè)藬?shù)即可得到b;
(2)根據(jù)(1)的計(jì)算可得抽取的樣本容量是50,并且補(bǔ)全直方圖即可;
(3)用學(xué)生總?cè)藬?shù)乘以前三組的頻率之和,計(jì)算即可得解.
解:(1)被抽取的學(xué)生人數(shù)為:4÷0.08=50(人),
所以,a=50﹣4﹣8﹣12﹣15=50﹣39=11,
b==0.22;
故答案為:11;0.22.
(2)由(1)可知,抽取的樣本容量是50.
補(bǔ)全頻數(shù)分布直方圖如圖所示:
故答案為50;
(3)(0.08+0.16+0.24)×1600=768(人).
答:該校成績沒達(dá)到優(yōu)秀的約為768人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.某商場為緩解“停車難”問題,擬建造地下停車庫,如圖是該地下停車庫坡道入口的設(shè)計(jì)示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5 m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)?/span>.小明認(rèn)為CD的長就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長作為限制的高度.小明和小亮誰說得對(duì)?請(qǐng)你判斷并計(jì)算出正確的結(jié)果.(結(jié)果精確到0.1 m,參考數(shù)據(jù):sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的有_____.(填序號(hào))
①的平方根是±3
②絕對(duì)值等于它本身的數(shù)一定是正數(shù)
③關(guān)于x的一元二次方程(m﹣2)x2+2x+1=0有實(shí)數(shù)根,則m的取值范圍是m≤3
④如果一個(gè)多邊形的內(nèi)角和是外角和的3倍,則這個(gè)多邊形的邊數(shù)是8
⑤觀察下列單項(xiàng)式2x,﹣4x2,8x3,﹣16x4,…,則第7個(gè)單項(xiàng)式是128x7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號(hào)自行車時(shí),以高出進(jìn)價(jià)的50%標(biāo)價(jià).已知按標(biāo)價(jià)九折銷售該型號(hào)自行車8輛與將標(biāo)價(jià)直降100元銷售7輛獲利相同.
(1)求該型號(hào)自行車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少元?
(2)若該型號(hào)自行車的進(jìn)價(jià)不變,按(1)中的標(biāo)價(jià)出售,該店平均每月可售出51輛;若每輛自行車每降價(jià)20元,每月可多售出3輛,求該型號(hào)自行車降價(jià)多少元時(shí),每月獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=a(x﹣1)2+k的圖象與x軸交于A,B兩點(diǎn),AB=4,與y軸交于C點(diǎn),E為拋物線的頂點(diǎn),∠ECO=135°.
(1)求二次函數(shù)的解析式;
(2)若P在第四象限的拋物線上,連接AE交y軸于點(diǎn)M,連接PE交x軸于點(diǎn)N,連接MN,且S△EAP=3S△EMN,求點(diǎn)P的坐標(biāo);
(3)過直線BC上兩點(diǎn)P,Q(P在Q的左邊)作y軸的平行線,分別交拋物線于N,M,若四邊形PQMN為菱形,求直線MN的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系;線段CD表示每千克的銷售價(jià)y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請(qǐng)解釋圖中點(diǎn)D的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義.
(2)求線段AB所表示的y1與x之間的函數(shù)表達(dá)式.
(3)當(dāng)0≤x≤90時(shí),銷售該產(chǎn)品獲得的利潤與產(chǎn)量的關(guān)系式是 ;當(dāng)90≤x≤130時(shí),銷售該產(chǎn)品獲得的利潤與產(chǎn)量的關(guān)系式是 ;總之,當(dāng)產(chǎn)量為 kg時(shí),獲得的利潤最大,最大利潤是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,Rt△ABC中,∠ACB=90°,AC=5,BC=12,點(diǎn)D在邊AB上,以AD為直徑的⊙O,與邊BC有公共點(diǎn)E,則AD的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com