【題目】已知,ABC,ACB=90°,AC=BC,點(diǎn)DBC邊上的一點(diǎn)

1以點(diǎn)C為旋轉(zhuǎn)中心ACD逆時(shí)針旋轉(zhuǎn)90°,得到BCE,請(qǐng)你畫出旋轉(zhuǎn)后的圖形;

2延長(zhǎng)ADBE于點(diǎn)F求證AFBE;

3AC=,BF=1連接CFCF的長(zhǎng)度為______

【答案】1)答案見(jiàn)解析;(2)答案見(jiàn)解析;(3.

【解析】試題分析:1)根據(jù)題意補(bǔ)全圖形;

2由旋轉(zhuǎn)的性質(zhì)得到∠CBE=∠CAD,BCE=∠ACD=90°,進(jìn)而得到CAD+∠E=90°,即可的得到結(jié)論;

3)易證△ADC∽△BDF,ADB∽△CDF,由相似三角形的性質(zhì)即可得到結(jié)論

試題解析:解:1補(bǔ)全圖形如下:

2)證明:∵ΔCBE由ΔCAD旋轉(zhuǎn)得到,∴ΔCBE≌ΔCAD,∴∠CBE=∠CADBCE=∠ACD=90°,∴∠CBE+∠E=∠CAD+∠E∴∠BCE=∠AFE=90°,AFBE

3∵∠ACB=DFB=90°,CDA=FDB∴△ADC∽△BDF, ∵∠ADB=CDF,∴△ADB∽△CDF,,

,CF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)O,過(guò)點(diǎn)ODEBC,分別交ABAC于點(diǎn)D、E

1)△BDO是等腰三角形嗎?請(qǐng)說(shuō)明理由.

2)若AB=10,AC=6,求△ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O為原點(diǎn),A. B為數(shù)軸上兩點(diǎn),AB=15,且OA:OB=2.

(1)A、B對(duì)應(yīng)的數(shù)分別為______;

(2)點(diǎn)A. B分別以4個(gè)單位/秒和3個(gè)單位/秒的速度相向而行,則幾秒后A. B相距1個(gè)單位長(zhǎng)度?

(3)點(diǎn)A. B(2)中的速度同時(shí)向右運(yùn)動(dòng),點(diǎn)P從原點(diǎn)O7個(gè)單位/秒的速度向右運(yùn)動(dòng),是否存在常數(shù)m,使得4AP+3OBmOP為定值,若存在請(qǐng)求出m值以及這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠ACB=90°AC=BC,直線MN經(jīng)過(guò)C,且ADMND,BEMNE

1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:ADC≌△CEB

2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),寫出線段DE、ADBE的數(shù)量關(guān)系,并說(shuō)明理由.

3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),直接寫出DE、ADBE的數(shù)量關(guān)系(不用說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,CF為⊙O上兩點(diǎn),且點(diǎn)C為弧BF的中點(diǎn),過(guò)點(diǎn)CAF的垂線,AF的延長(zhǎng)線于點(diǎn)EAB的延長(zhǎng)線于點(diǎn)D

1求證DE是⊙O的切線;

2如果半徑的長(zhǎng)為3,tanD=AE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,DE是邊AB的垂直平分線,交ABE、交ACD,連接BD.

(1)若∠A40°,求∠DBC的度數(shù).

(2)若△BCD的周長(zhǎng)為16cm,△ABC的周長(zhǎng)為26cm,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過(guò)點(diǎn)C,點(diǎn)A、B在直線l同側(cè),BDlAEl,垂足分別為DE.求證:△AEC≌△CDB;

2)類比探究:如圖2,RtABC中,∠ACB=90°,AC=6,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°AB′,連接B′C,求△AB′C的面積.

3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點(diǎn)OBC上,且OC=3cm,動(dòng)點(diǎn)P從點(diǎn)E沿射線EC2cm/s速度運(yùn)動(dòng),連結(jié)OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到線段OF.要使點(diǎn)F恰好落在射線EB上,求點(diǎn)P運(yùn)動(dòng)的時(shí)間ts

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(m4,m+1)x軸上,將點(diǎn)A右移8個(gè)單位,上移4個(gè)單位得到點(diǎn)B

1)則m= ;B點(diǎn)坐標(biāo)( );

2)連接ABy軸于點(diǎn)C,則

3)點(diǎn)Dx軸上一點(diǎn),ABD的面積為12,求D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視節(jié)目“奔跑吧兄弟”播出后深受中學(xué)生喜愛(ài),小睿想知道大家最喜歡哪位“兄弟”,于是在本校隨機(jī)抽取部分學(xué)生進(jìn)行抽查每人只能選一個(gè)自己最喜歡的“兄弟”,得到如圖所示的統(tǒng)計(jì)圖,

請(qǐng)結(jié)合圖中提供的信息解答下列問(wèn)題:

若小睿所在學(xué)校有1800名學(xué)生,估計(jì)全校喜歡“鹿晗”兄弟的學(xué)生人數(shù).

小睿和小軒都喜歡“陳赫”,小彤喜歡“鹿晗”,從他們?nèi)酥须S機(jī)抽選兩人參加“撕名牌”游戲,求選中的兩人中“一人喜歡陳赫,一人喜歡鹿晗”的概率要求列表或畫樹(shù)狀圖

查看答案和解析>>

同步練習(xí)冊(cè)答案