【題目】如圖,已知AC平分∠BADCEABE,CFADF,且BCCD

1)求證:BCE≌△DCF;

2)若AB15,AD7,求BE的長(zhǎng).

【答案】1)見解析;(2BE=4.

【解析】

1)由角平分線定理可得CE=CF,利用HL即可判定Rt△BCE≌Rt△DCF;

2)首先利用HL證明Rt△AEC≌Rt△AFC,得到AE=AF,然后由RtBCERtDCFBE=DF,最后根據(jù)AE+BE=AF+BE=AD+2BE即可得出答案.

證明:(1∵AC平分∠BADCE⊥AB于點(diǎn)E,CF⊥AD于點(diǎn)F

∴CE=CF,∠CEB=∠CFD=90°,

△CBE△CFD,△ACE△ACF都是直角三角形.

Rt△BCERt△DCF中,

∵CE=CFBC=CD,

∴Rt△BCE≌Rt△DCFHL.

2)在Rt△AECRt△AFC中,

∵AC=ACCE=CF,

∴Rt△AEC≌Rt△AFCHL),

∴AE=AF.

由(1)知,RtBCERtDCF

∴BE=DF.

∵AB=15,AD=7,

∴AE+BE=15=AF+BE

∴AD+DF+BE=15,

∴2BE=15-7=8,

∴BE=4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A(1,5)B(1,0)C(4,3)

1)直接寫出△ABC的面積為_________

2)在圖形中作出△ABC關(guān)于x軸的對(duì)稱圖形△A1B1C1

3)若△DAB與△CAB全等(D點(diǎn)不與C點(diǎn)重合),則點(diǎn)D的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以點(diǎn)O為原點(diǎn)的直角坐標(biāo)系中,一次函數(shù)y=-x+1的圖象與x軸交于A,與y軸交于點(diǎn)B,點(diǎn)C在第二象限內(nèi)且為直線AB上一點(diǎn),OC=AB,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水.連噴頭在內(nèi),柱高為1m.水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.

根據(jù)設(shè)計(jì)圖紙已知:在圖(2)中所示直角坐標(biāo)系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是

(1)噴出的水流距水平面的最大高度是多少?

(2)如果不計(jì)其他因素,那么水池的半徑至少為多少時(shí),才能使噴出的水流都落在水池內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,、兩點(diǎn)分別在邊上,相交于點(diǎn),若的面積為,則的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,己知,,點(diǎn)在邊上沿的方向以每秒的速度運(yùn)動(dòng)(不與點(diǎn),重合),點(diǎn)上,且滿足,設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為秒,當(dāng)是等腰三角形時(shí),________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在長(zhǎng)度為1個(gè)單位的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

(1)在圖中畫出與△ABC關(guān)于直線l成軸對(duì)稱的△AB′C′;

(2)△ABC的面積為________;

(3)在直線l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短,則這個(gè)最短長(zhǎng)度為________個(gè)單位長(zhǎng)度.(在圖形中標(biāo)出點(diǎn)P)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,對(duì)任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=pq(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱pq是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解為112,26或34,因?yàn)?2-1>6-2>4-3,所以34是最佳分解,所以F(n)=。

(1)如果一個(gè)正整數(shù)是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1

(2)如果一個(gè)兩位正整數(shù)t,t=10x+y。1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們就稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,ABAC,∠BAC90°,∠1=∠2,CEBDBD的延長(zhǎng)線于點(diǎn)E,CE1,延長(zhǎng)CEBA交于點(diǎn)F

1)求證:ADB≌△AFC;

2)求BD的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案