【題目】如圖,中, ,以為直徑的邊于點(diǎn),連接,過的垂線,交邊于點(diǎn),交邊的延長(zhǎng)線于點(diǎn)

1)求證:的切線;

2)若,,求劣弧的長(zhǎng).

【答案】1)見解析;(2

【解析】

1)根據(jù)圓周角定理求出ADBC,得出AD平分∠BAC,即可推出ODAC,推出ODEF,根據(jù)切線的判定推出即可.
2)由ODDF得∠ODF=90°,利用含30度的直角三角形三邊的關(guān)系OF=2OD,即OB+3=2OD,可解得OD=3,再計(jì)算出∠AOD=90°+F=120°,然后根據(jù)弧長(zhǎng)公式求解.

證明:(1)連接OD,

AB是直徑,
∴∠ADB=90°,
ADBC
AB=AC,
AD平分∠BAC,
∴∠OAD=CAD,
OA=OD
∴∠OAD=ODA,
∴∠ODA=CAD,
ODAC,
DEAC,
ODEF,
ODO
EF是⊙O的切線.
2)∵ODDF,
∴∠ODF=90°,
∵∠F=30°,
OF=2OD,即OB+3=2OD,
OB=OD,
OD=3
∵∠AOD=90°+F=90°+30°=120°,
∴劣弧的長(zhǎng)度=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于直角坐標(biāo)系 xOy 中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在兩個(gè)點(diǎn)A,B,使得點(diǎn)P在射線BC上,且∠APBACB<∠ACB180°),則稱P為⊙C的依附點(diǎn).

1)當(dāng)⊙O的半徑為1時(shí)

①已知點(diǎn)D(﹣1,0),E0,﹣2),F2.50),在點(diǎn)DE,F中,⊙O的依附點(diǎn)是___;

點(diǎn)T在直線y=x上,若T⊙O的依附點(diǎn),求點(diǎn)T的橫坐標(biāo)t的取值范圍;

2)⊙C的圓心在x軸上,半徑為1,直線 y=﹣2x+2x軸、y 軸分別交于點(diǎn)MN,若線段MN上的所有點(diǎn)都是⊙C 的依附點(diǎn),請(qǐng)求出圓心C的橫坐標(biāo)n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】孫老師在上《等可能事件的概率》這節(jié)課時(shí),給同學(xué)們提出了一個(gè)問題:“如果同時(shí)隨機(jī)投擲兩枚質(zhì)地均勻的骰子,它們朝上一面的點(diǎn)數(shù)和是多少的可能性最大?”同學(xué)們展開討論,各抒己見,其中小芳和小超兩位同學(xué)給出了兩種不同的回答.小芳認(rèn)為6的可能性最大,小超認(rèn)為7的可能性最大.你認(rèn)為他們倆的回答正確嗎?請(qǐng)用列表或畫樹狀圖等方法加以說明.(骰子:六個(gè)面上分別刻有1,2,34,5,6個(gè)小圓點(diǎn)的小正方體.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,將放置在第一象限,且軸,直線從原點(diǎn)出發(fā)沿軸正方向平移,在平移過程中直線被平行四邊形截得的線段長(zhǎng)度與直線在軸上平移的距離的函數(shù)圖象如圖2所示,則平行四邊形的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC是弦,∠ABC=30°,過圓心O作OD⊥BC,垂足為E,交弧BC于點(diǎn)D,連接DC,則∠DCB的度數(shù)為(  )

A. 30° B. 45° C. 50° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國(guó)古代數(shù)學(xué)專著,在數(shù)學(xué)上有其獨(dú)到的成就,不僅最早提到了分?jǐn)?shù)問題,也首先記錄了“盈不足”等問題.如有一道闡述“盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價(jià)各幾何?譯文為:現(xiàn)有若干人合伙出錢買雞,如果每人出9文錢,就會(huì)多11文錢;如果每人出6文錢,又會(huì)缺16文錢.問買雞的人數(shù)、雞的價(jià)格各是多少?請(qǐng)解答上述問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,已知△ABC中,AB=2,BC=4.畫出△ABC的高ADCE并求出的值.

2)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為,點(diǎn)B坐標(biāo)為滿足

①若沒有平方根,判斷點(diǎn)A在第幾象限并說明理由;

②若點(diǎn)A軸的距離是點(diǎn)B軸距離的3倍,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,CD為⊙O的弦,連接AC,BD,半徑COBD于點(diǎn)E,過點(diǎn)C作切線,交AB的延長(zhǎng)線于點(diǎn)F,且∠CFA=∠DCA

1)求證:OEBD;

2)若BE4CE2,則⊙O的半徑是   ,弦AC的長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù))的圖象交于,兩點(diǎn).

1)求的值;

2)求出一次函數(shù)與反比例函數(shù)的表達(dá)式;

3)過點(diǎn)軸的垂線,與直線和函數(shù))的圖象的交點(diǎn)分別為點(diǎn),當(dāng)點(diǎn)在點(diǎn)下方時(shí),寫出的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案