【題目】已知一次函數(shù) 的圖象與 、 軸分別交于點(diǎn) 、 ,直線 經(jīng)過 上的三分之一點(diǎn) ,且交 軸的負(fù)半軸于點(diǎn) ,如果 ,求直線 的解析式.
【答案】(1) 點(diǎn)的坐標(biāo)為 或 (2) 或 .
【解析】試題分析: 根據(jù)y=與y軸,x軸的交點(diǎn)分別為A,B,得出A,B兩點(diǎn)的坐標(biāo),再根據(jù)D為OA上的三分之一點(diǎn),得出D點(diǎn)的坐標(biāo),進(jìn)而得出C點(diǎn)的坐標(biāo),即可求出解析式.
試題解析:因?yàn)橹本y=與y軸,x軸的交點(diǎn)分別為A,B,所以兩點(diǎn)坐標(biāo)分別為A(0,3),B(2,0),所以OA=3,OB=2,所以S△AOB=OAOB=3,
因?yàn)?/span>D為OA上的三分之一點(diǎn),所以D點(diǎn)的坐標(biāo)為(0,1)或(0,2),
因?yàn)?/span>S△AOB=S△DOC=OCOD=3,所以當(dāng)OD=1時(shí),OC=6,當(dāng)OD=2時(shí),OC=3,
因?yàn)辄c(diǎn)C在x軸的負(fù)半軸上,所以C點(diǎn)的坐標(biāo)為(-6,0)或(-3,0),
所以直線CD的解析式為y=或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.
(1)若|a+c|+|b|=2,求b的值;
(2)用“>”從大到小把a(bǔ),b,﹣b,c連接起來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點(diǎn)E,F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF的長為( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).
(1)求此二次函數(shù)的表達(dá)式;
(2)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
【答案】(1)y=-x2-x+8(2)
【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點(diǎn)坐標(biāo),把B、C兩點(diǎn)坐標(biāo)代入二次函數(shù)的解析式就可解答;
(2)過點(diǎn)F作FG⊥AB,垂足為G,由EF∥AC,得△BEF∽△BAC,利用相似比求EF,利用sin∠FEG=sin∠CAB求FG,根據(jù)S=S△BCE-S△BFE,求S與m之間的函數(shù)關(guān)系式.
解:(1)解方程x2-10x+16=0得x1=2,x2=8
∴B(2,0)、C(0,8)
∴所求二次函數(shù)的表達(dá)式為y=-x2-x+8
(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,
∵OA=6,OC=8, ∴AC=10.
∵EF∥AC, ∴△BEF∽△BAC.
∴=. 即=. ∴EF=.
過點(diǎn)F作FG⊥AB,垂足為G,
則sin∠FEG=sin∠CAB=.∴=.
∴FG=·=8-m.
∴S=S△BCE-S△BFE
=
(0<m<8)
點(diǎn)睛:本題考查了一元二次方程的解法,待定系數(shù)法求函數(shù)關(guān)系系,相似三角形的判定與性質(zhì),span>銳角三角函數(shù)的定義,割補(bǔ)法求圖形的面積,熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式、相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
23
【題目】如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A(0,﹣6),點(diǎn)B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角邊CD在y軸上,且點(diǎn)C與點(diǎn)A重合.Rt△CDE沿y軸正方向平行移動(dòng),當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)O時(shí)停止運(yùn)動(dòng).解答下列問題:
(1)如圖(2),當(dāng)Rt△CDE運(yùn)動(dòng)到點(diǎn)D與點(diǎn)O重合時(shí),設(shè)CE交AB于點(diǎn)M,求∠BME的度數(shù).
(2)如圖(3),在Rt△CDE的運(yùn)動(dòng)過程中,當(dāng)CE經(jīng)過點(diǎn)B時(shí),求BC的長.
(3)在Rt△CDE的運(yùn)動(dòng)過程中,設(shè)AC=h,△OAB與△CDE的重疊部分的面積為S,請(qǐng)寫出S與h之間的函數(shù)關(guān)系式,并求出面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是的邊上的中線.
(1)①用尺規(guī)完成作圖:延長到點(diǎn),使,連接;
② 若,求的取值范圍;
(2)如圖2,當(dāng)時(shí),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計(jì)劃在總費(fèi)用元的限額內(nèi),租用汽車送名學(xué)生和名教師集體參加校外實(shí)踐活動(dòng),為確保安全,每輛汽車上至少要有名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.
(1)根據(jù)題干所提供的信息,確定共需租用多少輛汽車?
(2)請(qǐng)你給學(xué)校選擇一種最節(jié)省費(fèi)用的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)的水上樂園有一批人座的自劃船,每艘可供至位游客乘坐游湖,因景區(qū)加大宣傳,預(yù)計(jì)今年游客將會(huì)增加.水上樂園的工作人員在去年月日一天出租的艘次人自劃船中隨機(jī)抽取了艘,對(duì)其中抽取的每艘船的乘坐人數(shù)進(jìn)行統(tǒng)計(jì),并制成如下統(tǒng)計(jì)圖.
(1)求扇形統(tǒng)計(jì)圖中, “乘坐1人”所對(duì)應(yīng)的圓心角度數(shù);
(2)估計(jì)去年月日這天出租的艘次人自劃船平均每艘船的乘坐人數(shù);
(3)據(jù)旅游局預(yù)報(bào)今年月日這天該景區(qū)可能將增加游客300人,請(qǐng)你為景區(qū)預(yù)計(jì)這天需安排多少艘4人座的自劃船才能滿足需求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組在活動(dòng)課上測(cè)量學(xué)校旗桿的高度.已知小亮站著測(cè)量,眼睛與地面的距離(AB)是1.7米,看旗桿頂部E的仰角為30°;小敏蹲著測(cè)量,眼睛與地面的距離(CD)是0.7米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點(diǎn)B、D、F在同一直線上).
(1)求小敏到旗桿的距離DF.(結(jié)果保留根號(hào))
(2)求旗桿EF的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過點(diǎn)C(1,3)、D(3,1)分別作x軸的垂線,垂足分別為A、B.
(1)求直線CD和直線OD的解析式;
(2)點(diǎn)M為直線OD上的一個(gè)動(dòng)點(diǎn),過M作x軸的垂線交直線CD于點(diǎn)N,是否存在這樣的點(diǎn)M,使得以A、C、M、N為頂點(diǎn)的四邊形為平行四邊形?若存在,求此時(shí)點(diǎn)M的橫坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若△AOC沿CD方向平移(點(diǎn)C在線段CD上,且不與點(diǎn)D重合),在平移的過程中,設(shè)平移距離為t,△AOC與△OBD重疊部分的面積記為s,試求s與t的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com