如圖,已知兩個全等直角三角形的直角頂點及一條直角邊重合,將△ABC繞點C按順時針方向旋轉到△A′CB′的位置,其中A′C交直線AD于點E,A′B′分別交直線AD,AC于點F,G.則旋轉后的圖中,全等三角形共有( 。
A.2對B.3對C.4對D.5對

旋轉后的圖中,全等的三角形有:△B′CG≌△DCE,△A′B′C≌△ADC,△AGF≌△A′EF,
△ACE≌△A′CG,共4對.
故選C.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC的頂點坐標分別為A(1,1),B(7,2),C(3,4).
(1)將△ABC平移后得到△A1B1C1,已知點A平移到點A1(-5,-2).畫出△A1B1C1,并寫出B1,C1兩點的坐標;
(2)將B1,C1兩點繞點A1按逆時針方向旋轉90°,分別得到點B2,C2.畫出△A1B2C2,并寫出B2,C2兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC繞點A順時針旋轉30°后與△AED重合,已知AC=2,∠BAC=80°,則AD=______,∠DAB=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置.則∠DAC=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將圖形a繞圖形外一點O按逆時針方向旋轉90°得到圖形b,則對應線段AO與A′O之間的夾角為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將△ABC繞點C(0,-1)旋轉180°得到△A'B'C,設點A的坐標為(a,b),則點A′的坐標為(  )
A.(-a,-b)B.(-a.-b-1)C.(-a,-b+1)D.(-a,-b-2)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,P是正三角形ABC內的一點,且PA=6,PB=8,PC=10.若將△PAC繞點A逆時針旋轉60°后,得到△P′AB,則點P與P′之間的距離為______,∠APB=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點A、B坐標分別為(0,2)、(-1,0),將△ABC向下平移4個單位,得到△A′B′C′,再把△A′B′C′繞點C′順時針旋轉90°,得到△A″B″C′.
(1)在所給的圖中畫出直角坐標系,并畫出△A′B′C′和△A″B″C′(不要求寫畫法);
(2)寫出點C′的坐標是______;
(3)求AA″的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋轉得到的.
(1)請寫出旋轉中心的坐標是______,旋轉角是______度;
(2)以(1)中的旋轉中心為中心,分別畫出△A1AC1順時針旋轉90°、180°的三角形;
(3)設Rt△ABC兩直角邊BC=a、AC=b、斜邊AB=c,利用變換前后所形成的圖案證明勾股定理.

查看答案和解析>>

同步練習冊答案