【題目】下列說法中正確的是(

A.有且只有一條直線與已知直線垂直;

B.從直線外一點到這條直線的垂線段,叫做這點到這條直線距離;

C.互相垂直的兩條線段一定相交;

D.直線外一點與直線上各點連接而成的所有線段中,最短線段的長度是,則點到直線的距離是.

【答案】D

【解析】

對照垂線的兩條性質(zhì)逐一判斷.

①從直線外一點引這條直線的垂線,垂線段最短;

②過一點有且只有一條直線與已知直線垂直.

解:A、和一條直線垂直的直線有無數(shù)條,故A錯誤;

B、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離,不是指點到直線的垂線段的本身,而是指垂線段的長度,故B錯誤;

C、互相垂直的兩條線段不一定相交,線段有長度限制,故C錯誤;

D、直線l外一點A與直線l上各點連接而成的所有線段中最短線段就是垂線段,可表示點A到直線l的距離,故D正確.

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售一款口罩,每袋的進價為12元,計劃售價大于12元但不超過22元,通過試場調(diào)查發(fā)現(xiàn),這種口罩每袋售價提高1元,日均銷售量降低5袋,當售價為18元時,日均銷售量為50.

1)在售價為18元的基礎上,將這種口罩的售價每袋提高x元,則日均銷售量是   袋;(用含x的代數(shù)式表示)

2)要想銷售這種口罩每天贏利275元,該商場每袋口罩的售價要定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形AB1C1D1的邊長為1,∠B1=60°;作AD2B1C1于點D2,以AD2為一邊,做第二個菱形AB2C2D2,使∠B2=60°;作AD3B2C2于點D3,以AD3為一邊做第三個菱形AB3C3D3,使∠B3=60°,依此類推,這樣做的第2020個菱形ABnCnDn的邊ADn的長是( ).

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張長方形紙板按圖中虛線裁剪成塊,其中有塊是邊長都為厘米的大正方形,塊是邊長都為厘米的小正方形,塊是長為厘米,寬為厘米的一模一樣的小長方形,且,設圖中所有裁剪線(虛線部分)長之和為厘米.

(1)______(試用,的代數(shù)式表示);

(2)若每塊小長方形的面積為平方厘米,四個正方形的面積和為平方厘米,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等腰直角三角形,BAC=90°AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BDCF成立.

1)當ABC繞點A逆時針旋轉(zhuǎn) 時,如圖,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由

2)當ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖,延長DBCF于點H

求證:BDCF;

(ⅱ)當AB=2AD=時,求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用尺規(guī)作的平分線的方法如下:以為圓心,任意長為半徑畫弧交,于點,,再分別以點,為圓心,大于的長為半徑畫弧,兩弧交于點,作射線.由作法得,從而得兩角相等.那么這兩個三角形全等的根據(jù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究:如圖①,在中,點,分別是邊,,上,且,若,求的度數(shù).請把下面的解答過程補充完整.(請在空上填寫推理依據(jù)或數(shù)學式子)

解:∵

_____________________________

___________________________________

______________________________

_____________

應用:如圖②,在中,點,分別是邊,,的延長線上,且,若,則的大小為_____________(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,,平分平分,則

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點.P1次向右平移1個單位長度,向下平移2個單位長度至點,接著,第2次向右平移1個單位長度,向上平移3個單位長度至點,第3次向右平移1個單位長度,向下平移4個單位長度至點,第4次向右平移1個單位長度,向上平移5個單位至點,…,按照此規(guī)律,點2019次平移至點的坐標是

A.B.

C.D.

查看答案和解析>>

同步練習冊答案