【題目】如圖,四邊形為平行四邊形,為的中點,連接并延長交 的延長線于點.
(1)求證:△≌△;
(2)過點作于點,為的中點.判斷與的位置關系,并說明理由.
【答案】(1)見解析;(2)CH⊥DG,見解析
【解析】
(1)由平行四邊形的性質可得:AB‖DC,則可求出∠BAE=∠CFE,結合題目條件可證得結論;
(2)由(1)可證得CF=CD,可得CH為三角形DFG的中位線,則可得CH‖AF,可證CH⊥DG.
(1)證明:∵四邊形ABCD為平行四邊形,
∴AB‖DC,
∴∠BAE=∠CFE,
∵E為BC的中點,
∴BE=CE,
在△ABE和△FCE中:
,
∴△ABE△FCE(AAS);
(2)解:CH⊥DG,
理由如下:由(1)得△ABE△FCE,
∴AB=CF,
∵四邊形ABCD為平行四邊形,
∴AB=CD,
∴CF=CD,
∴C為FD的中點,
∵為的中點,
∴CH為△DFG的中位線,
∴CH‖AF,
∵DG⊥AE,
∴∠DHC=∠DGF=90°,
∴DG⊥AE.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結論:①EP平分∠CEB;②=PBEF;③PFEF=2;④EFEP=4AOPO.其中正確的是( )
A. ①②③B. ①②④C. ①③④D. ③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某校初二學生每周上網的時間,兩位學生進行了抽樣調查.小麗調查了初二電腦愛好者中40名學生每周上網的時間;小杰從全校400名初二學生中隨機抽取了40名學生,調查了每周上網的時間.小麗與小杰整理各自樣本數據,如下表所示:
時間段 (小時/周) | 小麗抽樣 人數 | 小杰抽樣 人數 |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每組可含最低值,不含最高值)
(1)你認為哪位同學抽取的樣本不合理?請說明理由;
(2)根據合理抽取的樣本,把上圖中的頻數分布直方圖補畫完整;
(3)專家建議每周上網2小時以上(含2小時)的同學應適當減少上網的時間,估計該校全體初二學生中有多少名同學應適當減少上網的時間?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是為(0,3)、(-1,0),將此平行四邊形繞點O順時針旋轉90°,得到平行四邊形A′B′OC′.
(1)若拋物線過點C、A、A′,求此拋物線的解析式;
(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△OC′D的周長;
(3)點M是第一象限內拋物線上的一動點,問:點M在何處時;△AMA′的面積最大?最大面積是多少?并求出此時點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店準備購進兩種商品,種商品毎件的進價比種商品每件的進價多20元,用3000元購進種商品和用1800元購進種商品的數量相同.商店將種商品每件的售價定為80元,種商品每件的售價定為45元.
(1)種商品每件的進價和種商品每件的進價各是多少元?
(2)商店計劃用不超過1560元的資金購進兩種商品共40件,其中種商品的數量不低于種商品數量的一半,該商店有幾種進貨方案?
(3)端午節(jié)期間,商店開展優(yōu)惠促銷活動,決定對每件種商品售價優(yōu)惠()元,種商品售價不變,在(2)條件下,請設計出銷售這40件商品獲得總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學團委組織征文活動,并設立若干獎項.學校計劃派人根據設獎情況去購買三種獎品共件,其中型獎品件數比型獎品件數的倍少件,型獎品所花費用不超過型獎品所花費用的倍.各種獎品的單價如右表所示.如果計劃型獎品買件,買件獎品的總費用是元.
型獎品 | 型獎品 | 型獎品 | |
單價(元) |
(1)試求與之間的函數關系式,并求出自變量的取值范圍;
(2)請你設計一種方案,使得購買這三種獎品所花的總費用最少,并求出最少費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結論:①ab<0,②>4a,③0<b<1,④當x>﹣1時,y>0,其中正確結論的個數是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx﹣3的圖象經過點(1,﹣4)和(﹣1,0).
(1)求這個二次函數的表達式;
(2)x在什么范圍內,y隨x增大而減?該函數有最大值還是有最小值?求出這個最值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,直線與軸交于點,與軸交于點;拋物線過,兩點,與軸交于另一點,拋物線的頂點為.
(1)求拋物線的解析式;
(2)在直線上方的拋物線上有一動點,求出點到直線的距離的最大值;
(3)如圖②,直線與拋物線的對稱軸相交于點,請直接寫出的平分線與軸的交點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com