【題目】如圖,ABC中,ABAC3,BC6,且若CD經過ABC的外心OABD,則CD_____

【答案】.

【解析】

延長AOBCF,作DEBCE,如圖:

根據(jù)等腰三角形的性質可求出高AF的長度,根據(jù)構建的輔助線,可得三角形相似,故,,,分別令DExEFy,可求得CD的長度.

延長AOBCF,作DEBCE,如圖,

ABACOBOC,

AF垂直平分BC,

∴∠AFC90°,BFCFBC3,

RtACF中,AF,

設⊙O的半徑為r,則OCOAr,OF9r,

RtOCF中,(9r2+32r2,解得r5

OF4,

DExEFy,

DEAF

,即,則x33y),

OFDE,

,,

,解得y,

OFDE,

,即

CD

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(2016黑龍江省龍東地區(qū))如圖,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)(﹣2,1),先將ABC沿一確定方向平移得到A1B1C1,點B的對應點B1的坐標是(1,2),再將A1B1C1繞原點O順時針旋轉90°得到A2B2C2,點A1的對應點為點A2

(1)畫出A1B1C1;

(2)畫出A2B2C2

(3)求出在這兩次變換過程中,點A經過點A1到達A2的路徑總長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列函數(shù)關系式中,二次函數(shù)的個數(shù)有(

1y=3(x1)2+1 2y=3S=32t2 4y x42x21 5y3x(2x) 3x2 (6) y=mx2+x

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小劉同學在課外活動中觀察吊車的工作過程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點O距離地面的高OO′=2米.當?shù)醣垌敹擞?/span>A點抬升至A′點(吊臂長度不變)時,地面B處的重物(大小忽略不計)被吊至B′處,緊繃著的吊纜A′B′=ABAB垂直地面O′B于點B,A′B′垂直地面O′B于點C,吊臂長度OA′=OA=10米,且cosA=sinA′=

(1)求此重物在水平方向移動的距離BC;

(2)求此重物在豎直方向移動的距離B′C.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點D是邊BC的中點,DE⊥AC、DF⊥AB,垂足分別是E、F,且BF=CE.

(1)求證:DE=DF;

(2)當A=90°時,試判斷四邊形AFDE是怎樣的四邊形,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,ABCO的頂點A,B坐標分別是(6,0),(04).動點P在直線OD解析式為yx上運動.

1)若反比例函數(shù)y圖象過C點,則m_____

2)證明:ODAB;

3)當以點P為圓心、PB長為半徑的⊙P隨點P運動⊙PABCO的邊所在直線相切時,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且ODBC,OD與AC交于點E.

(1)若B=70°,求CAD的度數(shù);

(2)若AB=4,AC=3,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個公共點A

(1)當a=時,求點A的坐標;

(2)過點A的直線y=x+k與二次函數(shù)的圖象相交于另一點B,當b≥﹣1時,求點B的橫坐標m的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①拋物線yax2+bx+3a≠0)與x軸,y軸分別交于點A(﹣1,0),B3,0),點C三點.

1)試求拋物線的解析式;

2)點D2,m)在第一象限的拋物線上,連接BCBD.試問,在對稱軸左側的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;

3)點N在拋物線的對稱軸上,點M在拋物線上,當以M、N、BC為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.

查看答案和解析>>

同步練習冊答案