今后你將大量遇到用坐標(biāo)的方法研究圖形的運動變換.
如圖1,在已建立直角坐標(biāo)系的方格紙中,圖形P的頂點為A,B,C,要將它平移旋轉(zhuǎn)到III圖(變換過程中圖形的頂點必須在格點上,且不能超出方格紙的邊界).
例如:將圖形P做如下變換(見圖2).
第一步:平移,使頂點C(6,6)移至點(4,3),得I圖;
第二步:繞著點(4,3)旋轉(zhuǎn)180°,得II圖;
第三步:平移,使點(4,3)移至點O(0,0),得III圖.
(1)寫出A,B兩點的坐標(biāo);
(2)從A,B,C三點中選取你要的點,仿照例題格式描述出另一種與上例不同的路線的圖形變換.
(1)根據(jù)C的坐標(biāo)變化可得到點的坐標(biāo)變化規(guī)律為:(x,y)?(x-2,y-3)?關(guān)于點(4,3)中心對稱?平移后的坐標(biāo).根據(jù)此規(guī)律或結(jié)合坐標(biāo)系可求得:A(4,6),B(6,4);

(2)平移,使頂點C(6,6)移至點(2,2)?繞著點(1,1)旋轉(zhuǎn)180°得到點O(0,0).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

平面直角坐標(biāo)系中,點A的坐標(biāo)為(4,-3),將線段OA繞原點O順時針旋轉(zhuǎn)60°,得到OA′,連接AA′,則△AOA′的周長是( �。�
A.10+3
2
B.10+4
2
C.10+5
2
D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6厘米,DC=7厘米.把三角板DCE繞點C順時針旋轉(zhuǎn)15°得到△D1CE1,如圖(2),這時AB與CD1相交于點O,與D1E1相交于點F.則AD1=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠ACB=90°,∠B=30°,AC=1,AC在直線l上.將△ABC繞點A順時針旋轉(zhuǎn)到位置①,可得到點P1,此時AP1=2;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP2=2+
3
;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP3=3+
3
;…,按此規(guī)律繼續(xù)旋轉(zhuǎn),直到得到點P2012為止,則AP2012=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知:如圖,E(-4,2),F(xiàn)(-1,-1),以O(shè)為中心,把△EFO旋轉(zhuǎn)180°,則點E的對應(yīng)點E′的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,O是原點,A是x軸上的點,將射線OA繞點O旋轉(zhuǎn),使點A與雙曲線y=
3
x
上的點B重合,若點B的縱坐標(biāo)是1,則點A的橫坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形網(wǎng)格中每個小正方形的邊長都是1,△ABC的各頂點及點O都在格點上.若把△ABC繞點O按順時針方向旋轉(zhuǎn)90°,試解決下列問題:
(1)畫出△ABC旋轉(zhuǎn)后得到的圖形△A′B′C′;
(2)以O(shè)為坐標(biāo)原點,過點O的水平直線為橫軸、鉛垂線為縱軸建立直角坐標(biāo)系,寫出△A′B′C′各頂點在該坐標(biāo)系中的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:
①△AED≌△AEF;②△ABE≌△ACD;③BE2+DC2=DE2;④
BE+BF+EF
AB
=
2

其中正確的是( �。�
A.①②④B.①③④C.①②③D.②③④BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,圖形旋轉(zhuǎn)一定角度后能與自身重合,則旋轉(zhuǎn)的角度可能是( �。�
A.30°B.60°C.90°D.120°

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偠顕ч埀顒佺箓閻g兘顢曢敃鈧敮闂佹寧妫佹慨銈夋儊鎼粹檧鏀介柣鎰▕閸ょ喎鈹戦鐐毈闁硅櫕绻冮妶锝夊礃閵娧冨箣闂備胶鎳撻顓㈠磻濞戞氨涓嶉柣妯肩帛閳锋垹绱掔€n亜鐨¢柡鈧紒妯镐簻闁靛ǹ鍎查ˉ銏☆殽閻愯尙澧﹀┑鈩冪摃椤︻噣鏌涚€n偅宕屾俊顐㈠暙閳藉鈻庤箛鏃€鐣奸梺璇叉唉椤煤閺嵮屽殨闁割偅娲栫粻鐐烘煏婵炲灝鍔存繛鎾愁煼閹綊宕堕鍕婵犮垼顫夊ú鐔奉潖缂佹ɑ濯撮柧蹇曟嚀缁椻剝绻涢幘瀵割暡妞ゃ劌锕ら悾鐑藉级鎼存挻顫嶅┑顔矫ぐ澶岀箔婢跺ň鏀介柣鎰綑閻忥箓鎳i妶鍡曠箚闁圭粯甯炴晶娑氱磼缂佹ḿ娲寸€规洖宕灒闁告繂瀚峰ḿ鏃€淇婇悙顏勨偓鏇犳崲閹烘绐楅柡宓本缍庣紓鍌欑劍钃卞┑顖涙尦閺屻倝骞侀幒鎴濆Б闂侀潧妫楅敃顏勵潖濞差亝顥堥柍鍝勫暟鑲栫紓鍌欒兌婵敻骞戦崶顒佸仒妞ゆ棁娉曢悿鈧┑鐐村灦閻燂箑鈻嶉姀銈嗏拺閻犳亽鍔屽▍鎰版煙閸戙倖瀚� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝洨纾界€广儱鎷戦煬顒傗偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備胶绮崝锕傚礈濞嗘垹鐭嗛柛鎰ㄦ杺娴滄粓鏌¢崶褎顥滄繛灞傚€濋幃鈥愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬫鍎愰柛鏃€鐟╁璇测槈濡攱鐎婚棅顐㈡祫缁茬偓鏅ラ梻鍌欐祰椤曟牠宕板Δ鍛仭鐟滃繐危閹版澘绠婚悗娑櫭鎾绘⒑閸涘﹦绠撻悗姘卞厴閸┾偓妞ゆ巻鍋撻柣顓炲€垮璇测槈閵忕姈鈺呮煏婢诡垰鍟伴崢浠嬫煟鎼淬埄鍟忛柛鐘崇墵閳ワ箓鏌ㄧ€b晝绠氶梺褰掓?缁€渚€鎮″☉銏$厱閻忕偛澧介悡顖滅磼閵娿倗鐭欐慨濠勭帛閹峰懘宕ㄩ棃娑氱Ш鐎殿喚鏁婚、妤呭磼濠婂懐鍘梻浣侯攰閹活亞鈧潧鐭傚顐﹀磼閻愬鍙嗛梺缁樻礀閸婂湱鈧熬鎷�