【題目】定義:有一組鄰邊均和一條對(duì)角線相等的四邊形叫做鄰和四邊形.

1)如圖1,四邊形ABCD中,∠ABC70°,∠BAC40°,∠ACD=∠ADC80°,求證:四邊形ABCD是鄰和四邊形.

2)如圖2,是由50個(gè)小正三角形組成的網(wǎng)格,每個(gè)小正三角形的頂點(diǎn)稱為格點(diǎn),已知A,B,C三點(diǎn)的位置如圖,請(qǐng)?jiān)诰W(wǎng)格圖中標(biāo)出所有的格點(diǎn)D,使得以AB,C,D為頂點(diǎn)的四邊形為鄰和四邊形.

3)如圖3,△ABC中,∠ABC90°,AB4BC4,若存在一點(diǎn)D,使四邊形ABCD是鄰和四邊形,求鄰和四邊形ABCD的面積.

【答案】1)詳見解析;(2)詳見解析;(32416

【解析】

1)根據(jù)題意先由三角形的內(nèi)角和為180°求得∠ACB的度數(shù),從而根據(jù)等腰三角形的判定證得ABACAD,按照鄰和四邊形的定義即可得出結(jié)論;

2)根據(jù)題意以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫圓,與網(wǎng)格的交點(diǎn),以及△ABC外側(cè)與點(diǎn)B和點(diǎn)C組成等邊三角形的網(wǎng)格點(diǎn)即為所求;

3)由題意先根據(jù)勾股定理求得AC的長(zhǎng),再分類計(jì)算即可:當(dāng)DADCAC時(shí);當(dāng)CDCBBD時(shí);當(dāng)DADCDBABADBD時(shí).

解:(1)∵∠ACB180°﹣∠ABC﹣∠BAC70°,

∴∠ACB=∠ABC,

ABAC

∵∠ACD=∠ADC

ACAD,

ABACAD

∴四邊形ABCD是鄰和四邊形.

2)如圖,格點(diǎn)D,D',D'即為所求作的點(diǎn).

3)∵在△ABC中,∠ABC90°,AB4,BC4,

AC8,

顯然AB,BC,AC互不相等.分兩種情況討論:

當(dāng)DADCAC時(shí),如圖所示:

SADCAC216,SABCAB×BC8

S四邊形ABCDSADC+SABC24;

當(dāng)CDCBBD時(shí),如圖所示:

SBDCBC212,SADBABBC)=4

S四邊形ABCDSBDC+SADB16;

當(dāng)DADCDBABADBD時(shí),鄰和四邊形ABCD不存在.

∴鄰和四邊形ABCD的面積是2416

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商場(chǎng)銷售AB兩種型號(hào)計(jì)算器,兩種計(jì)算器的進(jìn)貨價(jià)格分別為每臺(tái)30元,40. 商場(chǎng)銷售5臺(tái)A型號(hào)和1臺(tái)B型號(hào)計(jì)算器,可獲利潤(rùn)76元;銷售6臺(tái)A型號(hào)和3臺(tái)B型號(hào)計(jì)算器,可獲利120.

1)求商場(chǎng)銷售A,B兩種型號(hào)計(jì)算器的銷售價(jià)格分別是多少元?(利潤(rùn)=銷售價(jià)格進(jìn)貨價(jià)格)

2)商場(chǎng)準(zhǔn)備用不多于2500元的資金購(gòu)進(jìn)A,B兩種型號(hào)計(jì)算器共70臺(tái),問最少需要購(gòu)進(jìn)A型號(hào)的計(jì)算器多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜批發(fā)公司用實(shí)際行動(dòng)支持抗擊新冠肺炎疫情,為確保市民在疫情期間的蔬菜供應(yīng),以平均每噸萬元的價(jià)格購(gòu)進(jìn)一批蔬菜,已知這批蔬菜通過網(wǎng)絡(luò)在市場(chǎng)上的日銷售量()與銷售價(jià)格(萬元/)之間的函數(shù)關(guān)系如下圖所示.

1)求日銷售量與銷售價(jià)格之間的函數(shù)關(guān)系式; (不要求寫的取值范圍)

2)如果要確保日銷售量不小于噸,求最大毛利潤(rùn).(假設(shè):毛利潤(rùn)=銷售額-購(gòu)進(jìn)成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)國(guó)家提出的每天鍛煉1小時(shí)的號(hào)召,某校積極開展了形式多樣的陽光體育運(yùn)動(dòng),毛毛對(duì)該班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計(jì)(每人只能選其中一項(xiàng)),并繪制了如圖兩個(gè)統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列問題:

1)毛毛這次一共調(diào)查了多少名學(xué)生?

2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中足球所在扇形的圓心角度數(shù);

3)若該校有1800名學(xué)生,請(qǐng)估計(jì)該校喜歡乒乓球的學(xué)生約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠ACB 為鈍角,邊 AC 繞點(diǎn) A 沿逆時(shí)針方向旋轉(zhuǎn) 90°得到AD,邊 BC 繞點(diǎn) B 沿順時(shí)針方向旋轉(zhuǎn) 90°得到 BE,作 DMAB 于點(diǎn) M,ENAB 點(diǎn) N AB10,EN4, DM__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與反比例函數(shù)的圖象交于點(diǎn)和點(diǎn)

1)求的值及點(diǎn)的坐標(biāo);

2)若點(diǎn)軸上一點(diǎn),且,直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的頂點(diǎn)為A、C在雙曲線y1=上,BD在雙曲線上,k1=2k2k10),ABy軸,=24,則k2的值為(

A.4B.4C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點(diǎn)O在斜邊AB上,以O為圓心,OB長(zhǎng)為半徑作⊙O,與BC交于點(diǎn)D,連結(jié)AD,已知

1)求證:AD是⊙O的切線;

2)若BC=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EBC邊上一點(diǎn),連接AE,將ABE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)得到A1B1E,點(diǎn)B1在正方形ABCD內(nèi),連接AA1BB1;

1)求證:AA1E∽△BB1E;

2)延長(zhǎng)BB1分別交線段AA1,DC于點(diǎn)F、G,求證:AFA1F;

3)在(2)的條件下,若AB4BE1,GDC的中點(diǎn),求AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案