(2002•鄂州)已知拋物線y=mx2-2mx+4m-與x軸的兩個交點的坐標為A(x1,0),B(x2,0)(xl<x2),且x12+x22=34.
(1)求m,x1,x2的值;
(2)在拋物線上是否存在點C,使△ABC是一個頂角為120°的等腰三角形?若存在,請求出所有點C的坐標;若不存在,請說明理由.
【答案】分析:(1)本題要根據(jù)韋達定理來求解,先表示出x1+x2和x1•x2的值,然后代入x12+x22=34中即可求出m的值,進而可求出x1,x2的值.
(2)如果△ABC是一個頂角為120°的等腰三角形,那么∠CBA=30°,即直線BC的斜率為,據(jù)此可求出直線BC的解析式,然后聯(lián)立拋物線的解析式即可求出C點的坐標,然后判斷AC是否等于BC或AB是否等于BC即可,再利用C點可能在x軸上方,分別求出即可.
解答:解:(1)令y=0,則有:0=mx2-2mx+4m-;
∴x1+x2=8,x1•x2=
∴x12+x22=(x1+x22-2x1x2=64-2×=34
解得m=
∴y=x2-x+5
x2-x+5=0,
解得x1=3,x2=5
(2)假設存在符合條件的C點,那么∠CBA=30°,
設直線BC的解析式為y=kx+b,
則k=tan30°=,已知B(5,0)
∴y=x-
聯(lián)立拋物線的解析式有:

解得:,
∴存在符合條件的C點,坐標為(4,-).
如圖所示:
當AB=BC′時,過點C′作C′E⊥x軸于點E,
∵∠ABC′=120°,則∠C′BE=60°,
∴∠BC′E=30°,
∴BE=BC′=1,
∴EC′=,
∴C′(6,).
當AC″=AB時,C″(2,).
綜上所述:C點坐標為:(4,-),(6,),(2,).
點評:本題主要考查了二次函數(shù)與一元二次方程的關(guān)系、韋達定理的應用、函數(shù)圖象交點以及等腰三角形的判定等知識點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•鄂州)已知拋物線y=mx2-2mx+4m-與x軸的兩個交點的坐標為A(x1,0),B(x2,0)(xl<x2),且x12+x22=34.
(1)求m,x1,x2的值;
(2)在拋物線上是否存在點C,使△ABC是一個頂角為120°的等腰三角形?若存在,請求出所有點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《反比例函數(shù)》(02)(解析版) 題型:填空題

(2002•鄂州)已知反比例函數(shù)圖象上有一點P(m,n),且m+n=5,試寫出一個滿足條件的反比例函數(shù)的解析式   

查看答案和解析>>

科目:初中數(shù)學 來源:2002年湖北省鄂州市中考數(shù)學試卷(解析版) 題型:填空題

(2002•鄂州)已知反比例函數(shù)圖象上有一點P(m,n),且m+n=5,試寫出一個滿足條件的反比例函數(shù)的解析式   

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2002•鄂州)已知:如圖,在⊙O的內(nèi)接等邊三角形ABC中,經(jīng)過點A的弦與BC和弧分別相交于點D和P,連接PB、PC.
(1)寫出圖中所有的相似三角形:______;
(2)求證:PA2=BC2+PB•PC.

查看答案和解析>>

同步練習冊答案