【題目】關(guān)于x﹣a=2的解為正數(shù),則a的取值范圍為

【答案】a>﹣2
【解析】解:解方程得:x=a+2,

根據(jù)題意得:a+2>0,

解得:a>﹣2.

故答案是:a>﹣2.

【考點精析】認真審題,首先需要了解一元一次不等式的解法(步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數(shù)化為1(特別要注意不等號方向改變的問題)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點的坐標(biāo)分別為A2,1),B-1,3),C-3,2

1作出ABC關(guān)于x軸對稱的;

2)點的坐標(biāo)為 ,點的坐標(biāo)為 ;

3)點Paa-2)與點Q關(guān)y軸對稱,若PQ=8,則點P的坐標(biāo)為 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題提出】

學(xué)習(xí)了三角形全等的判定方法(即“SSS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等的情形進行研究.

【初步思考】

我們不妨將問題用符號語言表示為:在△ABC△DEF中,AC=DF,BC=EF∠B=∠E,然后,對∠B進行分類,可分為“∠B是直角、鈍角、銳角三種情況進行探究.

【深入探究】

第一種情況:當(dāng)∠B是直角時,△ABC≌△DEF

如圖,在△ABC△DEF,AC=DFBC=EF,∠B=∠E=90°,根據(jù)   ,可以知道Rt△ABC≌Rt△DEF

第二種情況:當(dāng)∠B是鈍角時,△ABC≌△DEF

如圖,在△ABC△DEFAC=DF,BC=EF∠B=∠E,且∠B,∠E都是鈍角,請你證明:△ABC≌△DEF(提示:過點CCG⊥ABAB的延長線于G,過點FFH⊥DEDE的延長線于H).

第三種情況:當(dāng)∠B是銳角時,△ABC△DEF不一定全等.

△ABC△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是銳角,請你利用圖,在圖中用尺規(guī)作出△DEF,使△DEF△ABC不全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在△ABC中,∠C=90°,AC=BC,BD平分∠CBA,DE⊥AB于點E.

求證:AD+DE=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A11)先向左平移2個單位,再向下平移2個單位得點B,則點B的坐標(biāo)是( 。

A.(-1,-1B.3,3C.00D.(-1,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2,-3)關(guān)于y軸的對稱點是( )

A. (-2,3) B. (2,3) C. (-2,-3) D. (2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算中,正確的是(
A.x4x2=x8
B.x4÷x2=x6
C.(x42=x8
D.(3x)2=3x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要調(diào)查某校學(xué)生周日的睡眠時間,下列選項調(diào)查對象中最合適的是( )
A.選取一個班級的學(xué)生
B.選取50名男生
C.選取50名女生
D.在該校各年級中隨機選取50名學(xué)生

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為參加學(xué)校的大課間活動比賽,準(zhǔn)備購進一批跳繩,已知2根A型跳繩和1根B型跳繩共需56元,1根A型跳繩和2根B型跳繩共需82元.

(1)求一根A型跳繩和一根B型跳繩的售價各是多少元?

(2)學(xué)校準(zhǔn)備購進這兩種型號的跳繩共50根,并且A型跳繩的數(shù)量不多于B型跳繩數(shù)量的3倍,請設(shè)計書最省錢的購買方案,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案