已知關于戈的方程ax2+bx+c=O(a≠0),下列說法:①若方程有兩個互為相反數(shù)的實數(shù)根,則b=0;②若方程ax2+bx+c=O沒有實數(shù)根,則方程ax2+bx-c=O必有兩個不相等的實根;③若二次三項式ax2+bx+c是完全平方式,則b2-4ac=0;④若c=0,則方程必有兩個不相等的實數(shù)根.其中正確的是(  )
分析:根據(jù)根與系數(shù)的關系得到兩根之和為-
b
a
,而它的兩個互為相反數(shù)的實數(shù)根,即可得到b=0;先由方程ax2+bx+c=O沒有實數(shù)根,得到△=b2-4ac<0,即0≤b2<4ac,即可判斷方程ax2+bx-c=O的△的正負;若二次三項式ax2+bx+c是完全平方式,得到ax2+bx+c=0時兩個相等的實根,即可得到△=0;若c=0,方程ax2+bx+c=O(a≠0)的△=b2-4ac=b2≥0,方程可能兩個相等的實數(shù)根.
解答:解:①若方程ax2+bx+c=O(a≠0)有兩個互為相反數(shù)的實數(shù)根,則兩根的和-
b
a
=0,解得b=0,故①正確;
②若方程ax2+bx+c=O沒有實數(shù)根,則△=b2-4ac<0,即0≤b2<4ac,所以方程ax2+bx-c=O的△=b2+4ac>0,則方程ax2+bx-c=O必有兩個不相等的實根,故②正確;
③若二次三項式ax2+bx+c是完全平方式,得到ax2+bx+c=0有兩個相等的實根,所以△=b2-4ac=0,故③正確;
④若c=0,方程ax2+bx+c=O(a≠0)的△=b2-4ac=b2≥0,所以方程兩個實數(shù)根,故④不正確;
故選A.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

2、已知關于x的方程ax2+2x+1=x2是一元二次方程,則a的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

已知關于戈的方程ax2+bx+c=O(a≠0),下列說法:①若方程有兩個互為相反數(shù)的實數(shù)根,則b=0;②若方程ax2+bx+c=O沒有實數(shù)根,則方程ax2+bx-c=O必有兩個不相等的實根;③若二次三項式ax2+bx+c是完全平方式,則b2-4ac=0;④若c=0,則方程必有兩個不相等的實數(shù)根.其中正確的是


  1. A.
    ①②③
  2. B.
    ①③④
  3. C.
    ①②④
  4. D.
    ②③④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知關于戈的方程ax2+bx+c=O(a≠0),下列說法:①若方程有兩個互為相反數(shù)的實數(shù)根,則b=0;②若方程ax2+bx+c=O沒有實數(shù)根,則方程ax2+bx-c=O必有兩個不相等的實根;③若二次三項式ax2+bx+c是完全平方式,則b2-4ac=0;④若c=0,則方程必有兩個不相等的實數(shù)根.其中正確的是( 。
A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年湖北省武漢市《考試指南報》元月調考九年級(上)數(shù)學模擬試卷(四)(解析版) 題型:選擇題

已知關于戈的方程ax2+bx+c=O(a≠0),下列說法:①若方程有兩個互為相反數(shù)的實數(shù)根,則b=0;②若方程ax2+bx+c=O沒有實數(shù)根,則方程ax2+bx-c=O必有兩個不相等的實根;③若二次三項式ax2+bx+c是完全平方式,則b2-4ac=0;④若c=0,則方程必有兩個不相等的實數(shù)根.其中正確的是( )
A.①②③
B.①③④
C.①②④
D.②③④

查看答案和解析>>

同步練習冊答案