【題目】如圖,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,則△DEB的周長為___cm.
【答案】20
【解析】
先根據ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再將其代入△DEB的周長中;
再通過邊長之間的轉換得到周長=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以△DEB周長為20cm.
∵CD平分∠ACB
∴∠ACD=∠ECD
∵DE⊥BC于E,
∴∠DEC=∠A=90°,
在△ACD與△ECD中,
∵,
∴△ACD≌△ECD(ASA),
∴AC=EC,AD=ED,
∵∠A=90°,AB=AC,
∴∠B=45°,
∴BE=DE,
∴△DEB的周長為:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=20cm,
故答案為:20.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=90°.
(1)如圖,若CD平分∠ACB,BE⊥CD,垂足E在CD的延長線上,試探究線段BE和CD的數(shù)量關系,并證明你的結論
(2)如圖,若點D在線段BC延長上,BE⊥DE,垂足為E,DE與AB相交于點F.試探究線段BE和FD的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正比例函數(shù)y=﹣2x與反比例函數(shù)y= 的圖象相交于A(m,2),B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標;
(2)結合圖象直接寫出當﹣2x> 時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某市120000名初中學生的視力情況,某校數(shù)學興趣小組收集有關數(shù)據,并進行整理分析.
(1)小明在眼鏡店調查了1000名初中學生的視力,小剛在鄰居中調查了20名初中學生的視力,他們的抽樣是否合理?并說明理由.
(2)該校數(shù)學興趣小組從該市七、八、九年級各隨機抽取了1000名學生進行調查,整理他們的視力情況數(shù)據,得到如下的折線統(tǒng)計圖.
請你根據抽樣調查的結果,估計該市120000名初中學生視力不良的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在5×5的正方形網格中,每個小正方形的邊長都是1,在所給網格中按下列要求畫出圖形:
(1)已知點A在格點(即小正方形的頂點)上,畫一條線段AB,長度為,且點B在格點上;
(2)以上題中所畫線段AB為一邊,另外兩條邊長分別是3,,畫一個三角形ABC,使點C在格點上(只需畫出符合條件的一個三角形);
(3)所畫的三角形ABC的AB邊上高線長為_________(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個25米長的梯子AB,斜靠在一豎直的墻AO上,這時的AO距離為24米,如果梯子的頂端A沿墻下滑4米,那么梯子底端B也外移4米,對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,AB是⊙C的切線,切點為D,直線AC交⊙C于點E、F,且CF= AC.
(1)求∠ACB的度數(shù);
(2)若AC=8,求△ABF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長為__________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com