【題目】如圖直線l經(jīng)過正方形ABCD的頂點(diǎn)A,分別過此正方形的頂點(diǎn)B、D作BE⊥l于點(diǎn)E,DF⊥l于點(diǎn)F.以正方形對(duì)角線的交點(diǎn)O為端點(diǎn),引兩條相互垂直的射線分別與AD、CD交于G、H兩點(diǎn),若EF=2,S△ABE= ,則線段GH長度的最小值是____.
【答案】1.
【解析】
∵直線l經(jīng)過正方形ABCD的頂點(diǎn)A,BE⊥l于點(diǎn)E,DF⊥l于點(diǎn)F.
∴∠BAD=∠BDA=∠DFA=90°,AB=AD.
∴∠ABE+∠BAE=90°,∠DAF+∠BAE=90°,
∴∠ABE=∠DAF,
∴△ABE≌△DAF,
∴BE=AF.
設(shè)AE=,則由EF=2,可得:AF==BE,
又∵S△ABE=,
∴,解得:,即AE=1,
∴BE=AF=EF-AE=2-1=1.
∴AB==AD=CD.
∵四邊形ABCD是正方形,OG⊥OH,
∴∠AOD=∠GOH=90°,OA=OD,∠OAG=∠ODH=45°,
∴∠AOG+∠GOD=90°,∠GOD+∠DOH=90°,
∴∠AOG=∠DOH,
∴△AOG≌△DOH,
∴OG=OH.
∴GH=.
∴當(dāng)OG最小時(shí),GH最小.
∵當(dāng)OG⊥AD時(shí),OG最小,而此時(shí)由OA=OD,∠AOD=90°可得OG=AD=,
∴GH最小=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),拋物線與y軸交于點(diǎn)A,E(0,b)為y軸上一動(dòng)點(diǎn),過點(diǎn)E的直線與拋物線交于點(diǎn)B、C .
(1)則點(diǎn)A的坐標(biāo)是 ______ ;
(2)當(dāng)b = 0時(shí)(如圖(2)),△ABE與△ACE的面積大小關(guān)系如何?當(dāng)時(shí),上述關(guān)系還成立嗎,為什么?
(3)是否存在這樣的b,使得△BOC是以BC 為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,, ,,,點(diǎn)在上,交于點(diǎn),交于點(diǎn),當(dāng)時(shí),________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市“健益”超市購進(jìn)一批元/千克的綠色食品,如果以元/千克銷售,那么每天可售出千克.由銷售經(jīng)驗(yàn)知,每天銷售量(千克)與銷售單價(jià)(元)()存在如下圖所示的一次函數(shù)關(guān)系.
(1)試求出y與x的函數(shù)關(guān)系式;
(2)設(shè)“健益”超市銷售該綠色食品每天獲得利潤p元,當(dāng)銷售單價(jià)為何值時(shí),每天可獲得 最大利潤?最大利潤是多少?
(3)根據(jù)市場調(diào)查,該綠色食品每天可獲利潤不超過4480元,現(xiàn)該超市經(jīng)理要求每天利潤不得低于4180元,請(qǐng)你幫助該超市確定綠色食品銷售單價(jià)x的范圍(直接寫出).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為正方形ABCD的中心,BE平分∠DBC交DC于點(diǎn)E,延長BC到點(diǎn)F,使FC=EC,連結(jié)DF交BE的延長線于點(diǎn)H,連結(jié)OH交DC于點(diǎn)G,連結(jié)HC.則以下四個(gè)結(jié)論中:①OH∥BF,②GH=BC,③OD=BF,④∠CHF=45°。正確結(jié)論的個(gè)數(shù)為( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),點(diǎn)F是CD延長線上一點(diǎn),連接EF,若BE=DF,點(diǎn)P是EF的中點(diǎn).
(1)求證:AE=AF;
(2)若∠AEB=75°,求∠CPD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O和⊙O上的一點(diǎn)A(如圖).
(1)作⊙O的內(nèi)接正方形ABCD和內(nèi)接正六邊形AEFCGH;
(2)在(1)題的作圖中,如果點(diǎn)E在上,求證:DE是⊙O內(nèi)接正十二邊形的邊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有4個(gè)質(zhì)地、大小均相同的小球,這些小球上分別標(biāo)有數(shù)字3、4、5、x.甲、乙兩人每次從袋中各隨機(jī)摸出1球,并計(jì)算摸出這2個(gè)小球上數(shù)字之和,記錄后都將放回袋中攪勻,進(jìn)行重復(fù)實(shí)驗(yàn).實(shí)驗(yàn)數(shù)據(jù)如下表:
摸球總次數(shù) | 10 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
“和為8”出現(xiàn)頻數(shù) | 2 | 10 | 13 | 24 | 30 | 37 | 58 | 82 | 110 | 150 |
“和為8”出現(xiàn)頻率 | 0.20 | 0.50 | 0.43 | 0.40 | 0.33 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
解答下列問題:
(1)如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為8”頻率將穩(wěn)定在它概率附近.估計(jì)
出現(xiàn)“和為8”概率是________.
0.33
(2)如果摸出的這兩個(gè)小球上數(shù)字之和為9概是,那么x值可以取7嗎?請(qǐng)用列表法或畫樹狀圖法說明理由;如果x值不可以取7,請(qǐng)寫出一個(gè)符合要求x值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD,AD=4,AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)△EFC是直角三角形時(shí),那么BE的長為____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com