【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,△ABC的頂點(diǎn)A、B、C均在格點(diǎn)上.
(1)∠ACB的大小為 ;
(2)在如圖所示的網(wǎng)格中以A為中心,取旋轉(zhuǎn)角等于∠BAC,把△ABC逆時(shí)針旋轉(zhuǎn),請(qǐng)用無(wú)刻度的直尺,畫(huà)出旋轉(zhuǎn)后的△AB'C',保留作圖痕跡,不要求證明;
(3)點(diǎn)P是BC邊上任意一點(diǎn),在(2)的旋轉(zhuǎn)過(guò)程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P',當(dāng)線段CP'最短時(shí),CP'的長(zhǎng)度為 .
【答案】(1)90°;(2)見(jiàn)解析;(3)
【解析】
(1)利用勾股定理的逆定理即可解決問(wèn)題.
(2)如圖,延長(zhǎng)AC到格點(diǎn)B′,使得AB′=AB=,取格點(diǎn)E,F,G,H,連接EG,FH交于點(diǎn)Q,取格點(diǎn)E′,F′.G′,H′,連接E′G′,F′H′交于點(diǎn)Q′,作直線AQ′,直線B′Q交于點(diǎn)C′,△AB′C′即為所求.
(3)通過(guò)將點(diǎn)B以A為中心,取旋轉(zhuǎn)角等于∠BAC旋轉(zhuǎn),找到線段BC旋轉(zhuǎn)后所得直線FG,只需找到點(diǎn)C到FG的垂足即為P′.
(1)由網(wǎng)格圖可知
,,,
∵AC2+BC2=AB2
∴由勾股定理逆定理,△ABC為直角三角形.
∴∠ACB=90°
故答案為:90°.
(2)如圖,延長(zhǎng)AC到格點(diǎn)B′,使得AB′=AB=,取格點(diǎn)E,F,G,H,連接EG,FH交于點(diǎn)Q,取格點(diǎn)E′,F′.G′,H′,連接E′G′,F′H′交于點(diǎn)Q′,作直線AQ′,直線B′Q交于點(diǎn)C′,△AB′C′即為所求.
(3)作圖過(guò)程如下:
取格點(diǎn)D,E,連接DE交AB于點(diǎn)T;取格點(diǎn)M,N,連接MN交BC延長(zhǎng)線于點(diǎn)G:取格點(diǎn)F,連接FG交TC延長(zhǎng)線于點(diǎn)P′,則點(diǎn)P′即為所求
證明:連CF
∵AC,CF為正方形網(wǎng)格對(duì)角線
∴A、C、F共線
∴ ,
由圖形可知: , ,
∵ , ,
∴,∵∠GCF=∠ACB,
∴△ACB∽△GCF
∴∠GFC=∠B
∵
∴當(dāng)BC邊繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)∠CAB時(shí),點(diǎn)B與點(diǎn)F重合,點(diǎn)C在射線FG上.
由作圖可知T為AB中點(diǎn)
∴∠TCA=∠TAC
∴∠F+∠P′CF=∠B+∠TCA=∠B+∠TAC=90°
∴CP′⊥GF
此時(shí),CP′最短
故答案為:如圖,取格點(diǎn)D,E,連接DE交AB于點(diǎn)T;取格點(diǎn)M,N,連接MN交BC延長(zhǎng)線于點(diǎn)G:取格點(diǎn)F,連接FG交TC延長(zhǎng)線于點(diǎn)P′,則點(diǎn)P′即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)設(shè)了“3D”打印、數(shù)學(xué)史、詩(shī)歌欣賞、陶藝制作四門(mén)校本課程,為了解學(xué)生對(duì)這四門(mén)校本課程的喜愛(ài)情況,對(duì)學(xué)生進(jìn)行了隨機(jī)問(wèn)卷調(diào)査(問(wèn)卷調(diào)査表如圖所示),將調(diào)査結(jié)果整理后繪制例圖1、圖2兩幅均不完整的統(tǒng)計(jì)圖表.
最受歡迎的校本課程調(diào)查問(wèn)卷
您好!這是一份關(guān)于您最喜歡的校本課程問(wèn)卷調(diào)查表,請(qǐng)?jiān)诒砀裰羞x擇一個(gè)(只能選一個(gè))您最喜歡的課程選項(xiàng),在其后空格內(nèi)打“√”,非常感謝您的合作.
選項(xiàng) | 校本課程 | |
A | 3D打印 | |
B | 數(shù)學(xué)史 | |
C | 詩(shī)歌欣賞 | |
D | 陶藝制作 |
校本課程 | 頻數(shù) | 頻率 |
A | 36 | 0.45 |
B | 0.25 | |
C | 16 | b |
D | 8 | |
合計(jì) | a | 1 |
請(qǐng)您根據(jù)圖表中提供的信息回答下列問(wèn)題:
(1)統(tǒng)計(jì)表中的a= ,b= ;
(2)“D”對(duì)應(yīng)扇形的圓心角為 度;
(3)根據(jù)調(diào)査結(jié)果,請(qǐng)您估計(jì)該校2000名學(xué)生中最喜歡“數(shù)學(xué)史”校本課程的人數(shù);
(4)小明和小亮參加校本課程學(xué)習(xí),若每人從“A”、“B”、“C”三門(mén)校本課程中隨機(jī)選取一門(mén),請(qǐng)用畫(huà)樹(shù)狀圖或列表格的方法,求兩人恰好選中同一門(mén)校本課程的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,拋物線()與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)當(dāng)a=1時(shí),拋物線頂點(diǎn)D的坐標(biāo)為________,AB=_________;
(2)AB的長(zhǎng)是否與a有關(guān)?說(shuō)明你的理由;
(3)若將拋物線()沿y軸折疊,得到另一拋物線,其頂點(diǎn)為D,如圖②.連接CD,CD和DD.
①若△CDD為等邊三角形時(shí),則a=______;
②若△CDD為等腰直角三角形時(shí),則a=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1:y=kx+b與雙曲線y=(x>0)交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)E,已知點(diǎn)A(1,3),點(diǎn)C(4,0).
(1)求直線l1和雙曲線的解析式;
(2)將△OCE沿直線l1翻折,點(diǎn)O落在第一象限內(nèi)的點(diǎn)H處,求點(diǎn)H的坐標(biāo);
(3)如圖,過(guò)點(diǎn)E作直線l2:y=3x+4交x軸的負(fù)半軸于點(diǎn)F,在直線l2上是否存在點(diǎn)P,使得S△PBC=S△OBC?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】裝商店銷售臺(tái)型和臺(tái)型電腦的利潤(rùn)為元,銷售臺(tái)型和臺(tái), 型電腦的利潤(rùn)為元.
(1)求每臺(tái)型電腦和型電腦的銷售利潤(rùn);
(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共 臺(tái),其中型電腦的進(jìn)貨量不超過(guò)型電腦的倍,購(gòu)進(jìn)型電腦臺(tái),這臺(tái)電腦的銷售總利潤(rùn)為元.間該商店購(gòu)進(jìn)型服各多少臺(tái).才能使銷售利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)圖象的對(duì)稱軸為直線,且,頂點(diǎn)為.
(1)求的值;
(2)求點(diǎn)的坐標(biāo)(用含的式子表示);
(3)已知點(diǎn),,若函數(shù)的圖象與線段恰有一個(gè)公共點(diǎn),直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購(gòu)進(jìn)了這種禮盒并且全部售完;2016年,這種禮盒的進(jìn)價(jià)比2014年下降了11元/盒,該商店用2400元購(gòu)進(jìn)了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價(jià)均為60元/盒.
(1)2014年這種禮盒的進(jìn)價(jià)是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤(rùn)的年增長(zhǎng)率相同,問(wèn)年增長(zhǎng)率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,△ABC中,∠C=90°,E為BC邊中點(diǎn).
(1)尺規(guī)作圖:以AC為直徑,作⊙O,交AB于點(diǎn)D(保留作圖痕跡,不需寫(xiě)作法).
(2)連結(jié)DE,求證:DE為⊙O的切線;
(3)若AC=5,DE=,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C = 90°,點(diǎn)O是斜邊AB上一定點(diǎn),到點(diǎn)O的距離等于OB的所有點(diǎn)組成圖形W,圖形W與AB,BC分別交于點(diǎn)D,E,連接AE,DE,∠AED=∠B.
(1)判斷圖形W與AE所在直線的公共點(diǎn)個(gè)數(shù),并證明.
(2)若,,求OB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com