【題目】某公司投資建了一商場(chǎng),共有商鋪30間,據(jù)預(yù)測(cè),當(dāng)每間租金定為10萬(wàn)元,可全部租出,每間的年租金每增加5000元,少租出商鋪1間,該公司要為租出的商鋪每間每年交各種費(fèi)用1萬(wàn)元,未租出的商鋪每間每年交各種費(fèi)用5000元.
(1)當(dāng)每間商鋪的年租金為l3萬(wàn)元時(shí),能租出多少間?
(2)若從減少空鋪的角度來(lái)看,當(dāng)每間商鋪的年租金為多少萬(wàn)元時(shí),該公司的年收益為275萬(wàn)元?
【答案】
(1)解:∵(130000﹣100000)÷5000=6,
∴能租出30﹣6=24(間)
(2)解:設(shè)每間商鋪年租金增加x萬(wàn)元
所以(30﹣ )(10+x)﹣(30﹣ )×1﹣ ×0.5=275,
解得x1=5,x2=0.5,
∴每間商鋪的年租金為10.5萬(wàn)元或15萬(wàn)元
∴若從減少空鋪的角度來(lái)看,當(dāng)每間商鋪的年租金為10.5萬(wàn)元時(shí),該公司的年收益為275萬(wàn)元.
【解析】(1)直接根據(jù)題意先求出增加的租金是4個(gè)5000,從而計(jì)算出租出多少間;(2)設(shè)每間商鋪的年租金增加x萬(wàn)元,直接根據(jù)收益=租金﹣各種費(fèi)用=275萬(wàn)元作為等量關(guān)系列方程求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)40°后,得到△AB′C′,且C′在邊BC上,則∠AC′C的度數(shù)為( )
A.50°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小麗和小華想利用摸球游戲決定誰(shuí)去參加市里舉辦的書(shū)法比賽,游戲規(guī)則是:在一個(gè)不透明的袋子里裝有除數(shù)字外完全相同的4個(gè)小球,上面分別標(biāo)有數(shù)字2,3,4,5.一人先從袋中隨機(jī)摸出一個(gè)小球,另一人再?gòu)拇惺O碌?個(gè)小球中隨機(jī)摸出一個(gè)小球.若摸出的兩個(gè)小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.
(1)用列表法或畫(huà)樹(shù)狀圖法,求小麗參賽的概率.
(2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)(﹣2,0),(x1 , 0),且1<x1<2,與y軸的正半軸的交點(diǎn)在(0,2)的下方.下列結(jié)論:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1<0.其中正確結(jié)論有 . (填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MON=20°,A、B分別為射線OM、ON上兩定點(diǎn),且OA=2,OB=4,點(diǎn)P、Q分別為射線OM、ON兩動(dòng)點(diǎn),當(dāng)P、Q運(yùn)動(dòng)時(shí),線段AQ+PQ+PB的最小值是( )
A.3
B.3
C.2
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,直線AN、MC交于點(diǎn)E,直線BM、CN交于點(diǎn)F.
(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°,其它條件不變,在圖②中補(bǔ)出符合要求的圖形,并判斷(1)題中的結(jié)論是否依然成立,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直角三角形AOB的頂點(diǎn)A、B分別落在坐標(biāo)軸上.O為原點(diǎn),點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)B的坐標(biāo)為(0,8).動(dòng)點(diǎn)M從點(diǎn)O出發(fā).沿OA向終點(diǎn)A以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿AB向終點(diǎn)B以每秒 個(gè)單位的速度運(yùn)動(dòng).當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)動(dòng)點(diǎn)M、N運(yùn)動(dòng)的時(shí)間為t秒(t>0).
(1)當(dāng)t=3秒時(shí).直接寫(xiě)出點(diǎn)N的坐標(biāo),并求出經(jīng)過(guò)O、A、N三點(diǎn)的拋物線的解析式;
(2)在此運(yùn)動(dòng)的過(guò)程中,△MNA的面積是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△MNA是一個(gè)等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,則下列結(jié)論:
①△ODC是等邊三角形 ②BC=2AB ③∠AOE=135° ④S△AOE=S△COE
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com