【題目】如圖,在ABC中,AB=CB,∠BAC=BCA,∠ABC=90°,FAB延長線上一點,點EBC上,且AE=CF.

(1)求證:RtABE RtCBF;

(2)求證:AECF;

(3)若∠CAE=30°,求∠ACF度數(shù).

【答案】(1)見解析;(2)見解析;(3)∠ACF=60°

【解析】

(1)RtABERtCBF中,由于AB=CB,AE=CF,利用HL可證RtABERtCBF;

(2)延長AECFD,根據(jù)三角形的內(nèi)角和得∠CDE=ABC=90°;

(3)AB=CB,∠ABC=90°,即可求得∠CAB與∠ACB的度數(shù),即可得∠BAE的度數(shù),又由RtABERtCBF,即可求得∠BCF的度數(shù),則由∠ACF=BCF+ACB即可求得答案.

1)證明:

∵∠ABC=90°

∴∠ABE=CBF=90°

ABECBF直角三角形

AB=BC,AE=CF

RtABERtCBF(HL)

2)延長AECFD

∵△ABE≌△CBF

∴∠BAE=BCF

∵∠AEB=CED

∴∠BAE+AEB=90°

∴∠DCE+CED=90°

∴∠CDE=90°

AECF.

3)∵AB=CB,∠ABC=90°,∠CAE=30°,∠CAB=CAE+EAB,

∴∠BCA=BAC=45°,

∴∠EAB=15°,

RtABERtCBF,

∴∠EAB=FCB

∴∠FCB=15°,

∴∠ACF=FCB+BCA=15°+45°=60°

即∠ACF=60°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABBC2CD,ABCD,∠C90°EBC的中點,AEBD相交于點F,連接DE.

(1)求證:ABE≌△BCD;

(2)判斷線段AEBD的數(shù)量關(guān)系及位置關(guān)系,并說明理由;

(3)CD1,試求AED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,,三角形是三角形經(jīng)過平移得到的圖形,設點是三角形中的任意一點,其平移后的對應點為.

請寫出三角形平移到三角形的過程;

分別寫出點的坐標;

的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一天,小明在玩紙片拼圖游戲時,發(fā)現(xiàn)利用圖①中的三種材料各若干,可以拼出一些長方形來解釋某些等式,比如圖②可以解釋為等式:.

(1)則圖③可以解釋為等式: .

(2)在虛線框中用圖①中的基本圖形若干塊(每種至少用一次)拼成一個長方形,使拼出的長方形面積為,并請在圖中標出這個長方形的長和寬.

(3)如圖④,大正方形的邊長為,小正方形的邊長為,若用、表示四個長方形的兩邊長(),觀察圖案,指出以下關(guān)系式:();();() ().其中正確的關(guān)系式的個數(shù)有 個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是ABC的外接圓,半徑為4,直線l與O相切,切點為P,lBC,l與BC間的距離為7

1僅用無刻度的直尺,畫出一條弦,使這條炫將ABC分成面積相等的兩部分保留作圖痕跡,不寫畫法).

2求弦BC的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8/千克,下面是他們在活動結(jié)束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強:如果以13/千克的價格銷售,那么每天可售出240千克.

小紅:通過調(diào)查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關(guān)系,每天銷售200千克以上.

(1)求每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關(guān)系式;

(2)該超市銷售這種水果每天獲取的利潤達到1040元,那么銷售單價為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的宣傳單為某印刷公司設計與印刷卡片計價方式的說明,小娜打算請此印刷公司設計一款母親節(jié)卡片并印刷,她再將卡片以每張15元的價格販售.若利潤等于收入扣掉成本,且成本只考慮設計費與印刷費,則她至少需印多少張卡片,才可使得卡片全數(shù)售出后的利潤超過成本的20%?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若化簡|1-x|-的結(jié)果為2x5,則x的取值范圍是(  )

A. x為任意實數(shù)B. 1x4 C. x1D. x4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABDE、CDFI、EFGH的面積分別為25、9、16,△AEH、△BDC、△GFI的面積分別為S1、S2、S3,則S1+S2+S3=_____

查看答案和解析>>

同步練習冊答案