分析 作ED∥AC交BC于D,根據(jù)平行線的性質(zhì)得到∠BDE=∠ACB,∠GED=∠F,∠EDG=∠FCG,由等腰三角形的性質(zhì)得到∠B=∠ACB,等量代換得到∠B=∠BDE,于是得到BE=ED,推出△GED≌△CFG,根據(jù)全等三角形的性質(zhì)得到GH=GC,根據(jù)等腰三角形的性質(zhì)得到BF=FH,等量代換即可得到結(jié)論.
解答 解:作EH∥AC交BC于H,
∴∠BHE=∠ACB,∠GEH=∠D,∠EHG=∠DCG,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠BHE,
∴BE=EH.
∵CD=BE,
∴CD=HE.
在△GEH和△CDG中,
$\left\{\begin{array}{l}{∠GEH=∠D}\\{HE=CD}\\{∠EHG=∠DCG}\end{array}\right.$,
∴△GEH≌△CDG(ASA),
∴GH=GC,
∵BE=EH,EF⊥BH,
∴BF=FH,
∴GH+FH=CG+BF=FG,
∴BC=2FG.
點(diǎn)評(píng) 本題考查了等腰三角形的性質(zhì)的運(yùn)用,平行線的性質(zhì)的運(yùn)用,全等三角形的判定和性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4cm | B. | 12cm | C. | 8cm | D. | 16cm |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com