17.如圖,△ABC中,∠B=∠ACB,點(diǎn)D在AC的延長(zhǎng)線上,點(diǎn)E在AB上,且BE=CD,DE交BC于G,EF⊥BC于F,求證:BC=2FG.

分析 作ED∥AC交BC于D,根據(jù)平行線的性質(zhì)得到∠BDE=∠ACB,∠GED=∠F,∠EDG=∠FCG,由等腰三角形的性質(zhì)得到∠B=∠ACB,等量代換得到∠B=∠BDE,于是得到BE=ED,推出△GED≌△CFG,根據(jù)全等三角形的性質(zhì)得到GH=GC,根據(jù)等腰三角形的性質(zhì)得到BF=FH,等量代換即可得到結(jié)論.

解答 解:作EH∥AC交BC于H,
∴∠BHE=∠ACB,∠GEH=∠D,∠EHG=∠DCG,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠BHE,
∴BE=EH.
∵CD=BE,
∴CD=HE.
在△GEH和△CDG中,
$\left\{\begin{array}{l}{∠GEH=∠D}\\{HE=CD}\\{∠EHG=∠DCG}\end{array}\right.$,
∴△GEH≌△CDG(ASA),
∴GH=GC,
∵BE=EH,EF⊥BH,
∴BF=FH,
∴GH+FH=CG+BF=FG,
∴BC=2FG.

點(diǎn)評(píng) 本題考查了等腰三角形的性質(zhì)的運(yùn)用,平行線的性質(zhì)的運(yùn)用,全等三角形的判定和性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

20.據(jù)有關(guān)數(shù)據(jù)顯示:2014年1月至2014年12月止高安市財(cái)政總收入約為21億元人民幣,其中“21億”用科學(xué)記數(shù)法表示為2.1×109

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知二次函數(shù)y1=-x2-2mx-m2-1(m是常數(shù)).
(1)求證:不論m為何值,該函數(shù)的圖象與x軸沒(méi)有公共點(diǎn);
(2)當(dāng)m=1時(shí),將函數(shù)y1=-x2-2mx-m2-1的圖象向上平移5個(gè)單位,得到函數(shù)y2=-x2+bx+c的圖象,且y2=-x2+bx+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,如圖所示.
①求點(diǎn)A、B、C的坐標(biāo);
②如圖,矩形MPQN的頂點(diǎn)M、N在線段AB上(點(diǎn)M在點(diǎn)N的坐標(biāo)且不與點(diǎn)A、B重合),頂點(diǎn)P、Q在拋物線上A、B之間部分的圖象上,過(guò)A、C兩點(diǎn)的直線與矩形邊MP相交于點(diǎn)E,當(dāng)矩形MPQN的周長(zhǎng)最大時(shí),求△AME的面積;
③當(dāng)矩形MPQN的周長(zhǎng)最大時(shí),在坐標(biāo)軸上是否存在點(diǎn)D,使得△ACD的面積與②中△AME的面積相等?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知在∠MON中,A,B分別為ON,OM上一點(diǎn).
(1)如圖,若CD⊥OB于D,OC平分∠MON,OA+OB=2OD,求證:∠MON+∠ACB=180°;
(2)若CD⊥OB于D,OC平分∠MON,∠MON+∠ACB=180°,求證:OA+OB=2OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,△ABC和△CDE都是等邊三角形,A、C、D在同一直線上,連接AE,BD.交點(diǎn)為F,連接CF,求證:CF平分∠AFD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系中,半徑為$\sqrt{5}$的⊙O與x正半軸交于點(diǎn)C,與y軸交于點(diǎn)D、E,直線y=-x+b(b為常數(shù))交坐標(biāo)軸于A、B兩點(diǎn).
(1)如圖1,若直線AB與$\widehat{CD}$有兩個(gè)交點(diǎn)F、G,求∠CFE的度數(shù),并直接寫出b的取值范圍;
(2)如圖2,若b=4,點(diǎn)P為直線AB上移動(dòng),過(guò)P點(diǎn)作⊙O的兩條切線,切點(diǎn)分別M,N,若∠MPN=90°,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)P為直線AB上一點(diǎn),過(guò)P點(diǎn)作⊙O的兩條切線,切點(diǎn)分別M、N,若存在點(diǎn)P,使得∠MPN=60°,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.不等式-2a<6的解是a>-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.絕對(duì)值為1的數(shù)有±1,-5$\frac{1}{5}$的倒數(shù)是-$\frac{5}{26}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在Rt△ABC中,則斜邊AB的長(zhǎng)為16cm,斜邊AB上的中線CD為( 。
A.4cmB.12cmC.8cmD.16cm

查看答案和解析>>

同步練習(xí)冊(cè)答案