如圖,菱形ABCD中,AB=2,∠A=120°,點(diǎn)P,Q,K分別為線段BC,CD,BD上的任意一點(diǎn),則PK+QK的最小值為【 】
A. 1
B. C. 2 D.
+1
B。
【解析】分兩步分析:
(1)若點(diǎn)P,Q固定,此時(shí)點(diǎn)K的位置:如圖,作點(diǎn)P關(guān)于BD的對(duì)稱(chēng)點(diǎn)P1,連接P1Q,交BD于點(diǎn)K1。
由線段中垂線上的點(diǎn)到線段兩端距離相等的性質(zhì),得
P1K1 = P K1,P1K=PK。
由三角形兩邊之和大于第三邊的性質(zhì),得P1K+QK>P1Q= P1K1+Q K1= P K1+Q K1。
∴此時(shí)的K1就是使PK+QK最小的位置。
(2)點(diǎn)P,Q變動(dòng),根據(jù)菱形的性質(zhì),點(diǎn)P關(guān)于BD的對(duì)稱(chēng)點(diǎn)P1在AB上,即不論點(diǎn)P在BC上任一點(diǎn),點(diǎn)P1總在AB上。
因此,根據(jù)直線外一點(diǎn)到直線的所有連線中垂直線段最短的性質(zhì),得,當(dāng)P1Q⊥AB時(shí)P1Q最短。
過(guò)點(diǎn)A作AQ1⊥DC于點(diǎn)Q1。 ∵∠A=120°,∴∠DA Q1=30°。
又∵AD=AB=2,∴P1Q=AQ1=AD·cos300=。
綜上所述,PK+QK的最小值為。故選B。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、![]() | B、![]() | C、![]() | D、![]() |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com