如圖,菱形ABCD中,AB=2,∠A=120°,點(diǎn)P,Q,K分別為線段BC,CD,BD上的任意一點(diǎn),則PK+QK的最小值為【    】

   A. 1        B.       C. 2        D.+1

 

【答案】

B。

【解析】分兩步分析:

     (1)若點(diǎn)P,Q固定,此時(shí)點(diǎn)K的位置:如圖,作點(diǎn)P關(guān)于BD的對(duì)稱(chēng)點(diǎn)P1,連接P1Q,交BD于點(diǎn)K1。

        由線段中垂線上的點(diǎn)到線段兩端距離相等的性質(zhì),得

        P1K1 = P K1,P1K=PK。

        由三角形兩邊之和大于第三邊的性質(zhì),得P1K+QK>P1Q= P1K1+Q K1= P K1+Q K1。

        ∴此時(shí)的K1就是使PK+QK最小的位置。

       (2)點(diǎn)P,Q變動(dòng),根據(jù)菱形的性質(zhì),點(diǎn)P關(guān)于BD的對(duì)稱(chēng)點(diǎn)P1在AB上,即不論點(diǎn)P在BC上任一點(diǎn),點(diǎn)P1總在AB上。

         因此,根據(jù)直線外一點(diǎn)到直線的所有連線中垂直線段最短的性質(zhì),得,當(dāng)P1Q⊥AB時(shí)P1Q最短。

         過(guò)點(diǎn)A作AQ1⊥DC于點(diǎn)Q1。 ∵∠A=120°,∴∠DA Q1=30°。

         又∵AD=AB=2,∴P1Q=AQ1=AD·cos300=。

         綜上所述,PK+QK的最小值為。故選B。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點(diǎn),且BE=DF.
(1)求證:AE=AF;
(2)若∠B=60°,點(diǎn)E,F(xiàn)分別為BC和CD的中點(diǎn),求證:△AEF為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,菱形ABCD中,∠A=60°,AB=2,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿B→C→D向終點(diǎn)D運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以相同的速度沿A→D→B向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為x秒,當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)△APQ的面積為y,則反映y與x的函數(shù)關(guān)系的圖象是( �。�
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,菱形ABCD中,∠BAD=60°,M是AB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),若AB長(zhǎng)為2
3
,則PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:菱形ABCD中,E是AB的中點(diǎn),且CE⊥AB,AB=6cm.
求:(1)∠BCD的度數(shù);
(2)對(duì)角線BD的長(zhǎng);
(3)菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的長(zhǎng).
(2)求菱形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂備胶枪妤犲繘骞忛敓锟� 闂傚倸鍊搁崑濠囧箯閿燂拷