【題目】我市某儲運(yùn)部緊急調(diào)撥一批物資,調(diào)進(jìn)物資共用4小時,調(diào)進(jìn)物資2小時后開始調(diào)出物資(調(diào)進(jìn)物資與調(diào)出物資的速度均保持不變).儲運(yùn)部庫存物資(噸)與時間(小時)之間的函數(shù)關(guān)系如圖所示,這批物資從開始調(diào)進(jìn)到全部調(diào)出需要的時間是( )
A. 4小時B. 4.3小時C. 4.4小時D. 5小時
【答案】C
【解析】
由圖中可以看出,2小時調(diào)進(jìn)物資30噸,調(diào)進(jìn)物資共用4小時,說明物資一共有60噸;2小時后,調(diào)進(jìn)物資和調(diào)出物資同時進(jìn)行,4小時時,物資調(diào)進(jìn)完畢,倉庫還剩10噸,說明調(diào)出速度為:(60-10)÷2噸,需要時間為:60÷25時,由此即可求出答案.
解:物資一共有60噸,調(diào)出速度為:(60-10)÷2=25(噸/h),需要時間為:60÷25=2.4(時)
∴這批物資從開始調(diào)進(jìn)到全部調(diào)出需要的時間是:2+2.4=4.4(小時).故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi)由極點(diǎn)、極軸和極徑組成的坐標(biāo)系叫做極坐標(biāo)系.如圖,在平面上取定一點(diǎn)O稱為極點(diǎn);從點(diǎn)O出發(fā)引一條射線Ox稱為極軸;線段OP的長度稱為極徑.點(diǎn)P的極坐標(biāo)就可以用線段OP的長度以及從Ox轉(zhuǎn)動到OP的角度(規(guī)定逆時針方向轉(zhuǎn)動角度為正)來確定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,則點(diǎn)P關(guān)于點(diǎn)O成中心對稱的點(diǎn)Q的極坐標(biāo)表示不正確的是( )
A. Q(3,240°) B. Q(3,﹣120°) C. Q(3,600°) D. Q(3,﹣500°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=﹣2x+1與y軸交于點(diǎn)A,與反比例函數(shù)y=(k為常數(shù))的圖象有一個交點(diǎn)B的縱坐標(biāo)是5.
(Ⅰ)求反比例函數(shù)的解析式,并說明其圖象所在的象限;
(Ⅱ)當(dāng)2<x<5時,求反比例函數(shù)的函數(shù)值y的取值范圍;
(Ⅲ)求△AOB的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個題目:
按照給定的計(jì)算程序,確定使代數(shù)式n(n+2)大于2000的n的最小正整數(shù)值.想一想,怎樣迅速找到這個n值,請與同學(xué)們交流你的體會.
小亮嘗試計(jì)算了幾組n和n(n+2)的對應(yīng)值如下表:
n | 50 | 40 | |
n(n+2) | 2600 | 1680 |
(1)請你繼續(xù)小亮的嘗試,再算幾組填在上表中(幾組隨意,自己畫格),并寫出滿足題目要求的n的值;
(2)結(jié)合上述過程,對于“怎樣迅速找到n值”這個問題,說說你的想法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過正方形網(wǎng)格中的格點(diǎn)、、、,請你僅用網(wǎng)格中的格點(diǎn)及無刻度的直尺分別在圖1、圖2、圖3中畫出一個滿足下列兩個條件的:
(1)頂點(diǎn)在上且不與點(diǎn)、、、重合;
(2)在圖1、圖2、圖3中的正切值分別為1、、2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是()的函數(shù),表1中給出了幾組與的對應(yīng)值:
表1:
… | 1 | 2 | 3 | … | ||||
… | 6 | 3 | 2 | 1 | … |
(1)以表中各對對應(yīng)值為坐標(biāo),在圖1的直角坐標(biāo)系中描出各點(diǎn),用光滑曲線順次連接.由圖像知,它是我們已經(jīng)學(xué)過的哪類函數(shù)?求出函數(shù)解析式,并直接寫出的值;
(2)如果一次函數(shù)圖像與(1)中圖像交于和兩點(diǎn),在第一、四象限內(nèi)當(dāng)在什么范圍時,一次函數(shù)的值小于(1)中函數(shù)的值?請直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級為了解學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級部分學(xué)生,對他們某天在課堂上發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
(1)則樣本容量是 ,并補(bǔ)全直方圖;
(2)該年級共有學(xué)生500人,請估計(jì)全年級在這天里發(fā)言次數(shù)不少于12的次數(shù);
(3)已知A組發(fā)言的學(xué)生中恰有1位女生,E組發(fā)言的學(xué)生中有2位男生,現(xiàn)從A組與E組中分別抽一位學(xué)生寫報(bào)告,請用列表法或畫樹狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率.
發(fā)言次數(shù)n | |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)為P的拋物線C1的解析式為y=a(x-3)2(a≠0),且經(jīng)過點(diǎn)(0,1).
(1)求a的值及拋物線C1的解析式;
(2)如圖,將拋物線C1向下平移h(h>0)個單位得到拋物線C2,過點(diǎn)K(0,m2)(m>0)作直線l平行于x軸,與兩拋物線從左到右分別相交于A,B,C,D四點(diǎn),且A,C兩點(diǎn)關(guān)于y軸對稱.
①點(diǎn)G在拋物線C1上,當(dāng)m為何值時,四邊形APCG為平行四邊形?
②若拋物線C1的對稱軸與直線l交于點(diǎn)E,與拋物線C2交于點(diǎn)F.試探究:在K點(diǎn)運(yùn)動過程中,的值是否改變?若會,請說明理由;若不會,請求出這個值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大熊山某農(nóng)家樂為了抓住“五一”小長假的商機(jī),決定購進(jìn)A、B兩種紀(jì)念品。若購進(jìn)A種紀(jì)念品4件,B種紀(jì)念品3件,需要550元;若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品5件,需要1050元。
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元。
(2)若該農(nóng)家樂決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該農(nóng)家樂共有幾種進(jìn)貨方案。
(3)若銷售每件A種紀(jì)念品可獲利潤30元,每件B種紀(jì)念品可獲利潤20元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com