)如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點,連接BD,使∠A=2∠1,E是BC上的一點,以BE為直徑的⊙O經(jīng)過點D.

(1)求證:AC是⊙O的切線;

(2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結果保留根號和π)


 

考點: 切線的判定;扇形面積的計算. 

專題: 幾何綜合題;壓軸題.

分析: (1)由OD=OB得∠1=∠ODB,則根據(jù)三角形外角性質得∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,所以∠DOC=∠A,由于∠A+∠C=90°,所以∠DOC+∠C=90°,則可根據(jù)切線的判定定理得到AC是⊙O的切線;

(2)解:由∠A=60°得到∠C=30°,∠DOC=60°,根據(jù)含30度的直角三角形三邊的關系得CD=OD=2,然后利用陰影部分的面積=SCOD﹣S扇形DOE

和扇形的面積公式求解.

解答: (1)證明:∵OD=OB,

∴∠1=∠ODB,

∴∠DOC=∠1+∠ODB=2∠1,

而∠A=2∠1,

∴∠DOC=∠A,

∵∠A+∠C=90°,

∴∠DOC+∠C=90°,

∴OD⊥DC,

∴AC是⊙O的切線;

 

(2)解:∵∠A=60°,

∴∠C=30°,∠DOC=60°,

在Rt△DOC中,OD=2,

∴CD=OD=2

∴陰影部分的面積=SCOD﹣S扇形DOE

=×2×2

=2

點評: 本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了扇形面積的計算.

 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


.如果2是一元二次方程x2=x+c的一個根,那么常數(shù)c是(  )

  A. 2 B. ﹣2 C. 4 D. ﹣4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中點,ED的延長線與CB的延長線交于點F.

(1)求證:FD2=FB•FC;

(2)若G是BC的中點,連接GD,GD與EF垂直嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在兩個同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區(qū)域的概率  飛鏢落在白色區(qū)域的概率.(填“>”“=”“<”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學去該店購買飲料,每種飲料被選中的可能性相同.

(1)若他去買一瓶飲料,則他買到奶汁的概率是  ;

(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


與﹣3ab是同類項的是( 。

  A. a2b B. ﹣3ab2 C. ab D. a2b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


觀察下列圖形,則第n個圖形中三角形的個數(shù)是( 。

  A. 2n+2 B. 4n+4 C. 4n﹣4 D. 4n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


5x2﹣[3x﹣2(2x﹣3)﹣4x2]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


計算        

查看答案和解析>>

同步練習冊答案