【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于C(0,3),直線y=+m經(jīng)過點(diǎn)C,與拋物線的另一交點(diǎn)為點(diǎn)D,點(diǎn)P是直線CD上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線解析式并求出點(diǎn)D的坐標(biāo);
(2)連接PD,△CDP的面積是否存在最大值?若存在,請(qǐng)求出面積的最大值;若不存在,請(qǐng)說明理由;
(3)當(dāng)△CPE是等腰三角形時(shí),請(qǐng)直接寫出m的值.
【答案】(1)y=﹣x2+2x+3,D點(diǎn)坐標(biāo)為();(2)當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)m的值為 或 或.
【解析】
(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點(diǎn)坐標(biāo);
(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;
(3)討論:當(dāng)PC=PE時(shí),m2+(-m2+2m+3-3)2=(-m2+m)2;當(dāng)CP=CE時(shí),m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當(dāng)EC=EP時(shí),m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.
(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,
∴拋物線的解析式為y=﹣x2+2x+3;
把C(0,3)代入y=﹣x+n,解得n=3,
∴直線CD的解析式為y=﹣x+3,
解方程組,解得
或,
∴D點(diǎn)坐標(biāo)為(,);
(2)存在.
設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),
∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,
∴S△PCD=(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,
當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;
(3)當(dāng)PC=PE時(shí),m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;
當(dāng)CP=CE時(shí),m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;
當(dāng)EC=EP時(shí),m2+(﹣m+﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,
綜上所述,m的值為或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在單位長度為1的正方形網(wǎng)格中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、B、C,完成下列問題:
(1)在圖中標(biāo)出圓心D,則圓心D點(diǎn)的坐標(biāo)為 ;
(2)連接AD、CD,則∠ADC的度數(shù)為 ;
(3)若扇形DAC是一個(gè)圓錐的側(cè)面展開圖,求該圓錐底面半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖要求:Ⅰ、過直線外一點(diǎn)作這條直線的垂線;Ⅱ、作線段的垂直平分線;
Ⅲ、過直線上一點(diǎn)作這條直線的垂線;Ⅳ、作角的平分線.
如圖是按上述要求排亂順序的尺規(guī)作圖:
則正確的配對(duì)是( 。
A. ①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B. ①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C. ①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D. ①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.
(1)若∠ABE=60°,求∠CDA的度數(shù);
(2)若AE=2,BE=1,CD=4.求四邊形AECD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察猜想
如圖①點(diǎn)B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為;
(2)問題解決
如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結(jié)BD,求BD的長;
(3)拓展延伸
如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請(qǐng)直接寫出BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀然后解決問題:
(閱讀)如圖(1),在ABCD中,過點(diǎn)D作DE⊥AB于點(diǎn)E沿DE線將△DEA剪切下來,并平移△DEA,使其拼接在△CE′B處這樣,原來ABCD就變成一個(gè)矩形EE′CD.
(問題解決)如圖(2),將△ABC通過剪切和拼接,得到一個(gè)矩形.要求:
(1)剪切線用實(shí)線,拼接圖用虛線;
(2)說明剪下的圖形是怎樣運(yùn)動(dòng)拼接的;
(3)加注必要的字母,拼接后的非重合字母在原字母的右上角標(biāo)注“′”,如:E′
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)B,且與正比例函數(shù)y=x的圖象交點(diǎn)為C(m,4).
(1)求一次函數(shù)y=kx+b的解析式;
(2)求△BOC的面積;
(3)若點(diǎn)D在第二象限,△DAB為等腰直角三角形,則點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高爾夫運(yùn)動(dòng)員將一個(gè)小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度h(m)與它的飛行時(shí)間(s)滿足二次函數(shù)關(guān)系,t與h的幾組對(duì)應(yīng)值如下表所示:
t(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
h(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(1)求h與t之間的函數(shù)關(guān)系式(不要求寫t的取值范圍);
(2)求小球飛行3s時(shí)的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點(diǎn),點(diǎn)B到拋物線對(duì)稱軸的距離記為d,滿足0<d≤1,則實(shí)數(shù)m的取值范圍是( 。
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com