【題目】某校實施課程改革,為初三學生設置了A,B,C,D,E,F(xiàn)共六門不同的拓展性課程,現(xiàn)隨機抽取若干學生進行了“我最想選的一門課”調查,并將調查結果繪制成如圖統(tǒng)計圖表(不完整)
選修課 | A | B | C | D | E | F |
人數(shù) | 20 | 30 |
根據(jù)圖標提供的信息,下列結論錯誤的是( )
A. 這次被調查的學生人數(shù)為200人 B. 扇形統(tǒng)計圖中E部分扇形的圓心角為72°
C. 被調查的學生中最想選F的人數(shù)為35人 D. 被調查的學生中最想選D的有55人
科目:初中數(shù)學 來源: 題型:
【題目】(1)發(fā)現(xiàn):
如圖1,點A為線段BC外一動點,且BC=a,AB=b.
填空:當點A位于 時,線段AC的長取得最大值,且最大值為 (用含a,b的式子表示)
(2)應用:
點A為線段BC外一動點,且BC=3,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值.
(3)拓展:
如圖3,在平面直角坐標系中,點A的坐標為(2,0),點B的坐標為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,請直接寫出線段AM長的最大值及此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC和△CEF是兩個不等的等邊三角形,且有一個公共頂點C,連接AF和BE,線段AF和BE有怎樣的大小關系?證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點D在AC上,點E在BC的延長線上,且BD=DE.
(1)若點D是AC的中點,如圖1,求證:AD=CE.
(2)若點D不是AC的中點,如圖2,試判斷AD與CE的數(shù)量關系,并證明你的結論:(提示:過點D作DF∥BC,交AB于點F.)
(3)若點D在線段AC的延長線上,(2)中的結論是否仍成立?如果成立,給予證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是正方形ABCD內一點,△CDE是等邊三角形,連接EB、EA,延長BE交邊AD點于點F.
(1)求證:△ADE≌△BCE;
(2)求∠AFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解2014年某地區(qū)10萬名大、中、小學生50米跑成績情況,教育部門從這三類學生群體中各抽取了10%的學生進行檢測,整理樣本數(shù)據(jù),并結合2010年抽樣結果,得到下列統(tǒng)計圖:
(1)本次檢測抽取了大、中、小學生共 名,其中小學生 名;
(2)根據(jù)抽樣的結果,估計2014年該地區(qū)10萬名大、中、小學生中,50米跑成績合格的中學生人數(shù)為 名;
(3)比較2010年與2014年抽樣學生50米跑成績合格率情況,寫出一條正確的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點E作BE的垂線交AB于點F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線.
(2)過點E作EH⊥AB于點H,求證:CD=HF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以BC為直徑的圓交△ABC的兩邊AB、AC于點D、E,點E恰為AC的中點,BF為△ABC的外角平分線,點F在圓上,請你僅用一把無刻度的直尺,過點A作一條線段,將△ABC分成面積相等的兩部分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABFG和正方形CDEF的頂點在邊長為1的正方形網(wǎng)格的格點上.
(1)建立平面直角坐標系,使點B,C的坐標分別為(0,0)和(5,0),并寫出點A,D,E,F(xiàn),G的坐標;
(2)連接BE和CG相交于點H,BE和CG相等嗎?并計算∠BHC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com