(2006•防城港)某歌碟出租店有兩種租碟方式:一種是用會員卡租碟,辦會員卡每月10元,租碟每張6角;另一種是零星租碟每張1元.若小強(qiáng)經(jīng)常來此店租碟,當(dāng)每月租碟至少    張時,用會員卡租碟更合算.
【答案】分析:分別把兩種方式下的收費(fèi)情況表示出來,然后列不等式進(jìn)行解答即可.
解答:解:設(shè)每月租碟x張.辦會員卡租碟共計(jì)10+0.6x,零星租碟共計(jì)x.由題意得:
x>10+0.6x,可得x>25,故至少要26張以上才更合算.
點(diǎn)評:解答一次函數(shù)的應(yīng)用問題中,要注意自變量的取值范圍還必須使實(shí)際問題有意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點(diǎn),設(shè)OA•OB=3(O為坐標(biāo)系原點(diǎn)).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為C,拋物線的對稱軸交x軸于點(diǎn)D,求證:點(diǎn)D是△ABC的外心;
(3)在拋物線上是否存在點(diǎn)P,使S△ABP=1?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西玉林市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點(diǎn),設(shè)OA•OB=3(O為坐標(biāo)系原點(diǎn)).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為C,拋物線的對稱軸交x軸于點(diǎn)D,求證:點(diǎn)D是△ABC的外心;
(3)在拋物線上是否存在點(diǎn)P,使S△ABP=1?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西玉林市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A為坐標(biāo)原點(diǎn),AB所在的直線為x軸,建立直角坐標(biāo)系.然后將矩形ABCD繞點(diǎn)A逆時針旋轉(zhuǎn),使點(diǎn)B落在y軸的E點(diǎn)上,則C和D點(diǎn)依次落在第二象限的F點(diǎn)上和x軸的G點(diǎn)上(如圖).
(1)求經(jīng)過B,E,G三點(diǎn)的二次函數(shù)解析式;
(2)設(shè)直線EF與(1)的二次函數(shù)圖象相交于另一點(diǎn)H,試求四邊形EGBH的周長.
(3)設(shè)P為(1)的二次函數(shù)圖象上的一點(diǎn),BP∥EG,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西防城港市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點(diǎn),設(shè)OA•OB=3(O為坐標(biāo)系原點(diǎn)).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為C,拋物線的對稱軸交x軸于點(diǎn)D,求證:點(diǎn)D是△ABC的外心;
(3)在拋物線上是否存在點(diǎn)P,使S△ABP=1?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西防城港市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A為坐標(biāo)原點(diǎn),AB所在的直線為x軸,建立直角坐標(biāo)系.然后將矩形ABCD繞點(diǎn)A逆時針旋轉(zhuǎn),使點(diǎn)B落在y軸的E點(diǎn)上,則C和D點(diǎn)依次落在第二象限的F點(diǎn)上和x軸的G點(diǎn)上(如圖).
(1)求經(jīng)過B,E,G三點(diǎn)的二次函數(shù)解析式;
(2)設(shè)直線EF與(1)的二次函數(shù)圖象相交于另一點(diǎn)H,試求四邊形EGBH的周長.
(3)設(shè)P為(1)的二次函數(shù)圖象上的一點(diǎn),BP∥EG,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案